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a  b  s  t  r  a  c  t

Cancer  represents  one  the  most  challenging  problems  in medicine  and biology  nowadays,  and  is being
actively  addressed  by many  researchers  from  different  areas  of  knowledge.  The  increasing  development
of  sophisticated  mathematical  models  and  computer-based  procedures  has  had  a  positive  impact  on our
understanding  of  cancer-related  mechanisms  and  the  design  of  anticancer  treatment  strategies.  However,
further investigation  and  experimentation  are  still  required  to completely  elucidate  the tumor-associated
mechanical  responses,  as  well  as the effect  of mechanical  forces  on  the  net tumor  growth.  In this  work  we
develop  a theoretical  framework  in  the  context  of  continuum  mechanics  to investigate  the anisotropic
growth  of  avascular  tumor  spheroids.  To  that  end,  a specific  anisotropic  growth  deformation  tensor  is
considered,  which  also  describes  an isotropic  growth  law  as  a particular  case.  Mixtures  theory  and  the
notion  of  multiple  natural  configurations  are  then  used  to formulate  a mathematical  model  of  avascular
tumor  growth.  More  precisely,  mass,  momentum  balance  and nutrients  diffusion  equations  are  derived,
where  solid  tumors  are  assumed  as  hyperelastic  and  compressible  materials.  Moreover,  mechanical  inter-
actions with  a rigid  extracellular  matrix  (ECM)  are  considered,  and  the  mechanical  modulation  of  growing
tumors  in  a rigid  surrounding  tissue  is  investigated  by means  of numerical  simulations.  Finally,  the  model
results  are  compared  with  experimental  data  previously  reported  in the literature.

© 2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Despite tremendous progress in medicine during last decades,
as well as the constant development of novel treatment techniques,
cancer is one of the most frequent causes of death worldwide. In
general, this disease results from an uncontrolled growth of abnor-
mal  cells serving no physiological functions. Solid tumor growth
is a complicated phenomenon involving many inter-related com-
plex processes. Such processes are dominated by a large number
of interacting mechanisms described by highly nonlinear dynam-
ics. Indeed, tumor-associated responses are difficult to approach
by experimental procedures alone and can typically be better
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understood by using appropriate mathematical models and sophis-
ticated computer simulations. Mathematical modeling has the
potential to provide new insights into these interactions, and
specifically to describe the main aspects of solid tumor growth
dynamics through models based on physical and mechanical pro-
cesses that consider cancer as an evolving system. Accordingly,
simulation of tumor growth and treatment responses have been
approached using a diverse variety of mathematical models over
the past decades. However, regardless of the valuable findings
reached in this field, the underlying tumor growth mechanisms are
far from being completely understood.

Bearing these facts in mind, the goal of this work is to inves-
tigate through a mathematical model the early avascular phase
of tumor growth taking into account the effects of an anisotropic
growth law, where, in addition, the mechanical interactions with
a rigid extracellular matrix (ECM) and the surrounding host tissue
are considered. It is worth pointing out that several mathemat-
ical models have been proposed to simulate and analyze tumor
growth with remarkable contributions. For instance, Ambrosi and
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Mollica [3] studied tumor growth using the notion of multiple nat-
ural configurations. The theory of materials with evolving natural
configurations, developed by Rajagopal and co-workers (see
Rajagopal et al. [21] and Wineman et al. [31] for further details),
was used to model growth and stress-induced deformation sepa-
rately, considering the tumor as a hyperelastic and compressible
material. The kinematics, and in general mechanics, of large defor-
mations associated with biological growth is still an open problem.
However, to model different biological materials, such as soft tis-
sues and cells, continuum mathematical models involving two
or more interacting constituents have been widely considered.
Indeed, a possible theoretical framework that can be success-
fully employed to describe the complex interactions that take
place between the constituents of a mixture is the theory of mix-
tures. A two-phase model is presented by Breward et al. [8] to
describe avascular tumor growth, where a mixture model is used
to simulate the tumor cells and extracellular water, which leads
to strong coupling between the phases. Byrne et al. [9] proposed
a two-phase material model based on the theory of mixtures
to investigate the avascular growth of tumors represented by a
solid cellular phase (living tumor cells) and a liquid phase (the
extracellular fluid in the tumor microenvironment). Although the
continuum mechanical treatment of biological growth has reached
considerable improvements there are still many open questions
and challenges that should be addressed. In particular, reliable
and advanced experimental procedures involving vascular tumor
growth phases are difficult to be performed. Significant efforts
have been dedicated to investigate the growth of avascular solid
tumors through in vitro cultures, where the role played by nutrients
and oxygen diffusion and consumption in sustaining the growth
are reinforced. In these experiments the mechanical effects have
been shown to play a crucial role in the resulting tumor growth
dynamics. For instance, considering several in vitro avascular tumor
growth in gels of different stiffness, Helmlinger et al. [13] demon-
strated that the resistance or stress exerted on tumor cells by
the surrounding microenvironment affects the growth dynamic
and, furthermore, that stiffer gels are associated with smaller
tumors. The influence of mechanical forces on tumor growth
has been recently addressed by Ambrosi et al. [5] and Preziosi
and Vitale [20]. In particular, an excellent review article on the
trends and challenges on cancer modelling is due to Preziosi and
Tosin [19].

In this work, we consider classical methods of continuum
mechanics together with mixtures theory and the notion of multi-
ple natural configurations to model growth of an avascular tumor
represented by a hyperelastic and compressible solid spherical
phase interacting with a rigid ECM and the surrounding host tis-
sue. It should be noted that this theoretical framework provides
a starting point to incorporate additional phases, as it is required
to describe more complex mechanisms of (solid) tumor growth. In
particular, tumor growth is derived from balance laws as well as
conservation principles supplemented with diffusion of nutrients,
e.g. oxygen, glucose, etc. The growth process is assumed isother-
mal, i.e. thermal energy is not considered. We  further assume that
the body does not rotate and growth is understood as an increase of
body mass. Indeed, as most soft biological tissues possess a highly
anisotropic microstructure, we provide an anisotropic growth law,
where the corresponding isotropic law is obtained as a particular
case. It should be noted that the formulation of general math-
ematical models that can take into account all or most of the
mechanisms involved in tumor growth is a very difficult task, if
not impossible. Therefore, one of the main goals of this work is to
propose a mathematical model as simple as possible to increase
our understanding of the influence of anisotropic growth on avas-
cular tumor growth. The effect of tumor-surrounding tissue is also
considered.

2. Preliminaries

2.1. Multiple natural configurations in the modeling of growth

The essential difficulty in formalizing the dynamics of biologi-
cal growth is the simultaneous modeling of the change in mass and
the stresses associated with this change, possibly caused by growth
itself or by the application of external loads. The theory of mate-
rials with evolving natural configurations overcomes this problem
by separating such stress contributions. Therefore, this theory is
an adequate framework to investigate tumor growth. We  adopt
the concept of evolving natural (stress-free) configurations (see
Humphrey and Rajagopal [14] for more details). Recently, a differ-
ent approach was  proposed by Ateshian and Ricken [6], where the
concept of evolving natural configurations was not considered. The
authors assumed that a given material can be composed by multiple
solid constituents, each one of them (each generation) being pro-
duced during a particular growth spurt and having its own invariant
stress-free reference configuration. An advantage of this approach
is that each generation can be treated using the conventional kine-
matics of continua, where the reference configuration is stress-free
and time-invariant.

Let us consider the motion of a generic particle of the i-th com-
ponent from its reference configuration �0

i
, which is assumed to be

stress free. We  denote by �el(t)
i

the natural configuration of the body

associated with the current configuration �t
i
. �el(t)
i

depends on time
t, but in what follows is referred as �el

i
for the sake of simplicity in

the notation. The natural configuration is the reference configura-
tion chosen to represent the elastic responses of the material and
it is considered the primary configuration of interest. It is impor-
tant to recall that the relaxation to the natural configuration is a
local process, not a global process. Now, the (local) deformation
from �el

i
to �t

i
is measured through the tensor Fel

i . In particular, the
change from �0

i
to the natural configuration �el

i
can be interpreted

as an unconstrained growth described by the tensor G˛. Hence,
it is possible to write F i = Fel

i Gi. It should be also noted that since
the body mass is preserved from �el

i
to �t

i
the tensor Fel

i is associ-
ated with the stress responses of the material and it is not directly
related to growth. The tensor Gi is directly connected to growth,
and therefore it is referred to as the growth tensor. Then, it fol-
lows that the contributions due to pure growth and stress-induced
deformations have been split. Moreover, the deformation gradient
F i contains information about the (local) deformation from �0

i
to �t

i
.

Since F i has an inverse, it follows that Fel
i and Gi are also invertible.

Finally, we  remark that since the natural configuration of the body
is unique at each instant of time t, then the density field in �el

i
is

identical to that in the original reference configuration.
From the assumption of preservation of mass between �el

i
to �t

i
,

it is well known that (see for instance Ambrosi and Mollica [3])

JGi = detGi =
dmi
dmi0

, (1)

where dmi and dmi0 represent the mass of a particle in the current
and reference configurations, respectively. The tensor Gi contains
the information regarding mass production or resorption. In what
follows, J is used to denote the determinant of a tensor. Further-
more, since Ji = Jel

i
JGi , where Jel

i
= det(Fel

i ), we have that

�i0 = �iJ
el
i , (2)

which resembles the usual Lagrangian version of the conservation
of mass in the absence of mass sources. In (2) �i0 and �i are the
density fields of the i-th component at time t = 0 and in the actual
configuration, respectively.
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