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a  b  s  t  r  a  c  t

The  equations  of motion  of  a rigid  body  acted  upon  by  general  conservative  potential  and  gyroscopic
forces were  reduced  by  Yehia  to  a single  second-order  differential  equation.  The  reduced  equation  was
used  successfully  in  the  study  of stability  of certain  simple  motions  of the body.  In  the  present  work  we
use  the  reduced  equation  to construct  a new  particular  solution  of  the  dynamics  of a  rigid  body  about  a
fixed  point  in  the  approximate  field  of a far Newtonian  centre  of attraction.  Using  a transformation  to a
rotating  frame  we  also  construct  a new  solution  of the  problem  of  motion  of  a multiconnected  rigid  body
in  an  ideal  incompressible  fluid.  It  turns  out that  the  solutions  obtained  generalize  a  known  solution  of
the  simplest  problem  of  motion  of a heavy  rigid  body  about  a fixed  point  due  to Dokshevich.
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1. Introduction

The equations of motion of a rigid body acted upon by general
conservative potential and gyroscopic forces were reduced by Yehia
to a single second-order differential equation [25,26]. The reduced
equation was used successfully in the study of stability of certain
simple motions of the body.

In the present work we use the reduced equation to construct
a new particular solution of the dynamics of a rigid body about
a fixed point in the approximate field of a far Newtonian centre
of attraction. Using a transformation to a rotating frame we  also
construct a new solution of the problem of motion of a multicon-
nected rigid body in an ideal incompressible fluid. It turns out that
the solutions obtained generalize a known solution of the simplest
problem of motion of a heavy rigid body about a fixed point due to
Dokshevich.

2. Classical problems of rigid body dynamics

The equations of motion of a rigid body about a fixed point can
be written in the Euler-Poisson form [1]:
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(1)

�̇1 + q�3 − r�2 = 0, �̇2 + r�1 − p�3 = 0, �̇3 + p�2 − q�1 = 0 (2)

where A, B, C are the principal moments of inertia, p, q, r are the
components of angular velocity of the body and �1, �2, �3 are the
components of the unit vector � along the axis of symmetry of the
force field, all being referred to the principal axes of inertia at the
fixed point. The potential V depends only on the Poisson variables
�1, �2, �3. Eqs. (1) and (2) admit three general first integrals:

I1 = 1
2

(Ap2 + Bq2 + Cr2) + V = h, the energy integral

I2 = Ap�1 + Bq�2 + Cr�3 = f, the areas integral

I3 = �2
1 + �2

2 + �2
3 = 1, the geometric integral

(3)

For Eqs. (1) and (2) with a given potential V to be integrable for
arbitrary initial conditions, a fourth integral of motion must exist
as a well-behaved function of the Euler–Poisson variables. As the
problem is mostly non-integrable, the construction of any particu-
lar solution of the equations of motion acquires great importance.
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2.1. The classical problem

The simplest version of the problem of motion of a rigid body
about a fixed point described by Eqs. (1) and (2), usually termed “the
classical problem”, is characterized by the presence of a uniform
gravity field. The potential in this version is

V = a�1 + b�2 + c�3 (4)

where a = Mgx0, b = Mgy0, c = Mgz0, M is the mass of the body, g is
the gravity acceleration and (x0, y0, z0) are the coordinates of the
centre of mass referred to the system of principal axes at the fixed
point.

This problem continued to be one of the most favourite prob-
lems for research for more than two centuries. It has become clear
that the problem has only the following three general integrable
cases, namely, Euler’s [2], Lagrange’s [3] and Kowalevski’s [4] cases.
Those are integrable for arbitrary initial conditions. There is also one
conditional integrable case, named after Goriachev and Chaplygin,
which is integrable only for motions on the zero level of the areas
integral (f = 0).

Apart from general and conditional integral cases, there
are 11 known particular solutions. Those are solutions of the
Euler–Poisson equations valid under more restrictions on the ini-
tial conditions. A table of the 11 known cases of this problem was
provided recently in [7].

2.2. The motion of a rigid body about a fixed point in a
Newtonian field

The classical problem was considered in more than one gener-
alized settings. The potential

V = a�1 + b�2 + c�3 + 1
2
n(A�2

1 + B�2
2 + C�2

3 ) (5)

characterizes the motion about a fixed point of a rigid body subject
to the Newtonian attraction of a far centre. In (5) a, b and c are the
same as in (4) and n = 3g/R, where R is the distance between the
centre of attraction and the fixed point (R is assumed very large,
compared with the dimensions of the body).

The classical integrable cases of Euler and Lagrange were gen-
eralized to cases of the potential (5) [12,13], but Kowalevski and
Goriachev-Chaplygin’s cases proved incompatible with that gener-
alization. The question of generalizing particular solutions mostly
remains open.

2.3. The problem of motion of a rigid body in a liquid

The problem of motion by inertia of a rigid body bounded by a
multi-connected surface in an infinite ideal incompressible fluid at
rest at infinity generalizes the two problems described above. In
its first version, the classical problem of the motion of a rigid body
bounded by a simply-connected surface in an ideal incompressible
fluid, it was explored in the works of Thompson and Tait and later
developed by Kirchhoff, who formulated the equations of motion in
the form known after his name and noted the simplest integrable
case [10]. Clebsch [11] reformulated the equations in Hamiltonian
form and obtained two integrable cases (for extended historical
review, see, e.g. [8]). Steklov, Lyapunov and Chaplygin considered
further Kirchhoff’s equations and obtained other integrable cases.

Equations of motion of the full problem of the motion of a multi-
connected (perforated) rigid body in a fluid circulating through
perforations were formed in their final form in the Kirchhoff vari-
ables by Lamb [8].

In [9], a new form of the equations of the motion of a rigid
body bounded by a multi-connected surface in an infinite ideal

incompressible fluid is obtained by Yehia. Equations of the motion
take the form

�̇I + � × (�I + k + �K̄)=�×(s + �J), �̇ + � × �=0 (6)

where I = diag(A, B, C), � = (p, q, r), K̄ = 1
2 (TrK)� − K, � being the

unit matrix; J, K are 3 × 3 constant symmetric matrices and s, k are
constant vectors. The system (6) is identical with the equation of
the motion of a gyrostat (with gyrostatic moments k) about a fixed
point under the influence of a force field with potential s.�+ 1

2 �J.�
and gyroscopic forces whose moment is −� × �K̄.

The system (6) admits the three first integrals

I1 = 1
2

�.�I + s.�+1
2

�J.� =h, the energy integral

I2 = �2 = 1, the analogue of geometric integral

I3 =
(

�I + k+1
2

�K̄
)

· � = f, the cyclic integral

(7)

For the present problem, there are seven general and two  con-
ditional integrable cases. Very few particular solutions are known
(see e.g. [22]).

3. Reduced equation in rigid body dynamics

The general problem of motion of a rigid body in a liquid
described by equations of motion of the Euler–Poisson type (6),
admit three general integrals of motion (7). In principle, this allows
eliminating three of the six Euler–Poisson variables in virtue of
those integrals and obtaining three first-order autonomous equa-
tions in the other three variables with respect to time as an
independent variable. One more step can be taken, to eliminate
time from the derivatives, and thus obtain two  (non-autonomous)
first order equations in two variables with respect to the third.
Eventually, one can eliminate one of the variables to obtain a single
second order equation in one variable with respect to the other.

Several authors tried to achieve maximal reduction of order to
a single second-order equation using algebraic elimination pro-
cesses.

Many trials were made by different authors to reduce the order
of these equations using the known three classical integrals of the
problem [14–17,19]. However, these trials either remained incom-
plete or they led to a situation which resembles that of the original
system in depending on some unsolved constraints.

Kharlamov succeeded in reducing the problem of a gyrostat in
the uniform field of gravity to a system of two differential equations
of the first order [18]. His method depends on the elimination of
the Poisson variables and cannot be generalized neither to more
general potentials nor to cases when gyroscopic forces are present.

The ultimate solution of the problem of reduction of order of the
equations of motion of a rigid body was achieved by Yehia in two
works: for a gyrostat moving under action of arbitrary potential
forces [25], and for a body acted upon by a general axi-symmetric
combination of conservative potential and gyroscopic forces [26].
A single second-order differential equation in two of Poisson’s vari-
ables �1, �3 is obtained for each case. This equation, connecting only
geometric quantities, has proved very useful in certain qualitative
and analytical studies of the motion of a rigid body, e.g. [23,24].

In the present work, we  use the reduced equation of rigid body
dynamics due to Yehia in building a new particular solution for the
problem of motion of the body in the approximate field of a remote
centre of Newtonian attraction. We  will also use a transformation
of the Euler–Poisson variables to generate a solution of the problem
of motion of a rigid body in a liquid, which contains one parameter
more than the last solution.
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