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a  b  s  t  r  a  c  t

We  explore  the  orbital  dynamics  of a realistic  three  dimensional  model  describing  the  properties  of  a disk
galaxy  with  a spherically  symmetric  central  dense  nucleus  and  a  triaxial  dark  matter  halo  component.
Regions  of phase  space  with  regular  and  chaotic  motion  are  identified  depending  on  the  parameter  values
for triaxiality  of  the  dark  matter  halo  and  for breaking  the rotational  symmetry.  The  four  dimensional
Poincaré  map  of the  three  degrees  of  freedom  system  is analyzed  by a study  of its restriction  to  various
two  dimensional  invariant  subsets  of  its domain.
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1. Introduction

To present a global panorama of the dynamics of a system by
plotting Poincaré maps has a long tradition for two degrees of free-
dom (2-dof) systems where these maps live on a 2 dimensional
domain (for a good explanation of the idea of Poincaré maps see
chapter 6 in Jackson [15]). Unfortunately things are not so easy
for more degrees of freedom. Already for 3-dof the domain of the
Poincaré map  has dimension 4 and a graphical representation of
the map  is impossible. However, such 4 dimensional maps usually
have the property that there are 2 dimensional invariant surfaces
in the domain, i.e. surfaces with the property that initial conditions
on these lower dimensional surfaces lead to trajectories which lie
completely in this lower dimensional surface. And then it is easy
to present graphically the restriction of the map  to any one of such
surfaces. Such restricted 2 dimensional maps are a great help to
understand important properties of the full 4 dimensional map.

To be useful such 2 dimensional invariant surfaces must have
some kind of robustness property, i.e. they must survive parame-
ter changes such that we can follow the perturbation scenario in
the restricted map. There are two types of surfaces with this prop-
erty. First, the so called normally hyperbolic invariant manifolds
(abbreviated NHIMs, for their general properties see Wiggins [29]),
however, it seems that these objects do not play any important role
in our present galaxy model. Second, lower dimensional surfaces
may  be invariant because of symmetry reasons, and in the present
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galaxy model there are various surfaces of this type which will be
very useful in the following.

A further contribution to the understanding of 4 dimensional
maps comes from a possible partially integrable limit case of the
full system and from the corresponding possibility to build up the 4
dimensional map  as stack of 2 dimensional reduced maps. Because
of its importance for the present work let us give a short summary
of the stack construction in a form appropriate for the case found
in the dynamics of the galactic potential. Assume a Hamiltonian 3-
dof system where the unperturbed case has a rotational symmetry
around the z-axis and where correspondingly L, the z-component
of the angular momentum, is conserved. Then the unperturbed
system can be reduced to a 2-dof system which depends parametri-
cally on the value of L. This leads to a 1 parameter family of reduced
Poincaré maps each one acting on a 2 dimensional domain. From
the reduced maps we obtain the non-reduced Poincaré map  acting
on its 4 dimensional domain in a two  step process. First, we pile
up the continuum of 2 dimensional reduced maps to a 3 dimen-
sional stack where L acts as stack parameter. Second, we  form the
Cartesian product of this pile with a circle representing the cyclic
angle canonically conjugate to the conserved quantity L. The result
is a 4 dimensional construction. The full 4 dimensional Poincaré
map  (still for the unperturbed case) acts on the resulting 4 dimen-
sional domain as reduced map  in each invariant horizontal leaf of
constant L and in addition applies a rotation to each copy of the
circle. If we now add a perturbation which destroys the rotational
symmetry around the z axis then the invariant foliation into the
horizontal leaves is destroyed. However, if the perturbation con-
serves some discrete symmetry then the 4 dimensional map  will
have corresponding invariant 2 dimensional surfaces S also after
the perturbation. These 2 dimensional surfaces do not coincide
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with any one of the invariant 2 dimensional horizontal leaves of
the unperturbed stack, they are transverse to the stack structure.
Most important, the dynamics restricted to S is sensitive to the per-
turbation and can be exploited to obtain an understanding of the
perturbation scenario for the full 3-dof system. The restricted map
on S visualizes the decay of the stack structure under the pertur-
bation. The idea works the same if the role of S is taken over by
a NHIM. For all details of this approach and for examples of the
stack construction see Jung et al. [16]; Gonzalez & Jung [10]; Gon-
zalez et al. [11]. For the analysis of a 3-dof molecular system taking
advantage of this procedure see Lin et al. [21]. The present article
shows that the method is equally successful for the investigation
of the dynamics of a 3-dof galaxy model.

In order to explore the orbital dynamics of galaxies one should
build first suitable models describing sufficiently and realistically
the properties of the galaxy. Usually observations provide the nec-
essary information on the construction of the dynamical models. A
galactic model can be characterized as successful and realistic only
if the derived results agree with the corresponding observational
data. In most of the cases, the galaxy models are either spherical or
axially symmetric. For instance, in a spherically symmetric poten-
tial all three components of the angular momentum and of course
the total angular momentum are conserved. Therefore, the motion
of the stars is plane and takes place in the plane perpendicular to the
vector of the total angular momentum. Spherically symmetric mod-
els for galaxies were studied by Dehnen [8]; Rindler-Daller et al.
[25]; Zhao [31]. In an axially symmetric potential on the other hand,
only the z component of the total angular momentum is conserved.
Many previous papers are devoted to the distinction between order
and chaos in axially symmetric potentials (see e.g., Zotos [32,33];
Zotos & Caranicolas [36]). Furthermore, axially symmetric galaxy
models were presented and examined in Cretton et al. [7].

Another interesting category of galactic potentials are the so-
called composite galaxy models. In those models the potential is
multi-component and each component describes a different part of
the system. Composite axially symmetric galaxy models describing
the motion of stars in our Galaxy were also studied by Binney [3].
In these models the gravitational potential is composed by three
superposed disks: one representing the gas layer, one the thin disk
and one for the thick disk. Recently in Terzić and Sprague [28], a
class of realistic triaxial models for galaxies was provided. In par-
ticular, the authors extended an earlier method proposed by Terzić
and Graham [27] to three-dimensional systems by replacing the
radial with an ellipsoidal symmetry in the total mass density. More-
over, triaxial galaxy models were also constructed by Bailin et al [2]
and Moore et al. [23].

The layout of the paper is as follows: Section 2, contains a
detailed presentation of the structure and the properties of our
galactic gravitational model. In Section 3, we construct Poincaré
maps in order to investigate the orbital properties of the 6 dimen-
sional phase space. The paper ends with Section 4, where the
discussion and the main conclusions of our numerical analysis are
presented.

2. Presentation of the galactic model

The total gravitational potential �(x, y, z) is three-dimensional
and it consists of three components: a central, spherical component
�n, a flat disk �d and a triaxial dark matter halo potential �h.

The spherically symmetric nucleus is modeled by a Plummer
potential [4]

�n(x, y, z) = −GMn√
x2 + y2 + z2 + c2

n

. (1)

Fig. 1. A plot of the rotation curve in our galactic model. We distinguish the total
circular velocity (black) and also the contributions from the central massive nucleus
(red), the disk (green) and that of the dark matter halo (blue). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of  the article.)

Here G is the gravitational constant, while Mn and cn are the mass
and the scale length of the nucleus, respectively. Here we  must
point out, that potential (1) is not intended to represent a black
hole nor any other compact object, but a dense and massive bulge.
Therefore, we  do not include any relativistic effects.

In order to model the disk we  use the Miyamoto-Nagai potential
[22]

�d(x, y, z) = −GMd√
x2 + y2 + (s +

√
h2 + z2)

2
, (2)

where Md is the mass of the disk, while s and h are the horizontal
and vertical scale lengths of the disk.

For the description of the properties of the dark matter halo we
use the logarithmic potential

�h(x, y, z) = �2
0

2
ln

(
x2 + ˛y2 + ˇz2 + c2

h

)
, (3)

where  ̨ and  ̌ are the flattening parameters along the y and z axes,
respectively, ch is the scale length of the halo, while the parameter
�0 is used for the consistency of the galactic units. The choice for
the logarithmic potential was  motivated for several reasons: (i) it
can model a wide variety of shapes of galactic haloes by suitably
choosing the parameter ˇ. In particular, when 0.1 ≤  ̌ < 1 the dark
matter halo is prolate, when  ̌ = 1 is spherical, while when 1 <  ̌ < 2
is oblate; (ii) it is appropriate for the description of motion in a dark
matter halo as it produces a flat rotation curve at large radii (see
Fig. 1); (iii) it allows for the investigation of flattened configurations
of the galactic halo at low computational costs; (iv) the relatively
small number of input parameters of Eq. (3) is an advantage con-
cerning the performance and speed of the numerical model; and
(v) the flattened logarithmic potential was utilized successfully in
previous works to model a dark matter halo component (e.g., Helmi
[12]; Ružička et al. [26]; Zotos [34]).

We  use a system of galactic units, where the unit of length
is 1 kpc, the unit of mass is 2.325 × 107M� (solar masses) and
the unit of time is 0.9778 × 108 yr (about 100 Myr). The veloc-
ity units is 10 km/s, the unit of angular momentum (per unit
mass) is 10 km kpc s−1, while G is equal to unity. The energy
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