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a  b  s  t  r  a  c  t

A  novel  analysis  method  is presented  for  form-finding  of  tensegrity  structures.  The  spectral  decompo-
sition  of the  force  density  matrix  and  the singular  value  decomposition  of the  equilibrium  matrix  are
performed  iteratively  to find  the  feasible  sets  of  nodal  coordinates  and  force  densities.  An algorithm  of
determining  the  sole  configuration  of  free-form  tensegrities  is  provided  by  specifying  an  independent
set  of nodal  coordinates,  which  indicates  the  geometrical  and  mechanical  properties  of  the  structures
can  be  at  least  partly  controlled  by  the  proposed  method.  Several  illustrative  examples  are  presented
to  demonstrate  the efficiency  and robustness  in  finding  self-equilibrium  configurations  of  tensegrity
structures.
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1. Introduction

Tensegrity systems are spatial, reticulated and lightweight
structures that have been known for almost half a century [1].
The makeup of these structures consists of compressed struts and
tensioned cables [2]. The tensioned cables of the structure are
self-stressed such that the entire system could be provided stable
equilibrium before any external loads are added, including gravi-
tational. These smart structures have a large number of potential
applications, for the benefit of systems which need, for instance, a
small transportation, tunable stiffness properties, active vibration
damping and deployment or configuration control [3–10]. There-
fore, since tensegrity systems appeared in the early 1950s, the
concept of tensegrity has received significant interest among sci-
entists and engineers throughout disciplines such as architecture
[11], aerospace [12], civil engineering [13–15], robotics [16,17] to
biological [18–20]. Nevertheless, a survey of current activities in
research and engineering practice shows that much work has yet
to be accomplished, particularly in the field of designing complex,
asymmetric and free-form tensegrities.

Over the past few decades, large amounts of researches related
to form-finding of tensegrity structures (including regular and
irregular forms) have been performed. Schek [21] first proposed
the force density method, which is widely considered the most
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effective and convenient form-finding procedure for tensile struc-
tures. Motro et al. [22] then applied the dynamic relaxation method
to tensile structures and solved many other nonlinear problems.
Following their track, Zhang et al. [23] employed the dynamic
relaxation method for form-finding of nonregular tensegrities by
modifying their corresponding regular ones. Zhang and Ohsaki [24]
and Estrada et al. [25] proposed new numerical methods utilizing
the force density formulation. Pagitz and Tur [26] advised a finite
element method for form-finding of tensegrities. Most recently,
Xu and Luo [27] suggested a genetic algorithm for form-finding
of nonregular tensegrity structures. Tran and Lee [28] introduced
a numerical method for form-finding of tensegrities with multiple
states of self-stress.

Researchers have recently focused their attentions on the
applications of tensegrity structures as acoustic and mechani-
cal metamaterials [29–31], which are fresh concepts that can
respond to the needs of a society in the new century. In order
to better realize the optimal design and prestress tunability of
tensegrity metamaterials, the sole configuration of tensegrities
need to be determined. In most available form-finding methods,
assumptions on either the symmetry of the structure, the ele-
ment lengths or the force density coefficients must be imposed
a priori. For example, (i) force density coefficients are imposed
as symbolic variables [32], (ii) a global symmetry is assumed in
a group theory so as to simplify form-finding procedure [33],
(iii) some of the member lengths are prespecified in a dynamic
relaxation process and non-linear programming [22,31]. However,
this kind of information may  not always be available or easy to
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define beforehand. The computation of complex and/or asymmet-
ric tensegrity structures with these procedures therefore remains
difficult.

The present paper is an extension of Estrada’s work [25] and
is aimed at form-finding of free-form tensegrity structures in
which both Classes 1 (where bars do not touch) and 2 (where
bars do connect to each other at a pivot) of tensegrity struc-
tures are investigated. Tensegrities satisfying either stability (i.e.,
the tangent stiffness matrix is positive definite) or super stabil-
ity (i.e., the geometrical stiffness matrix is positive definite) can
be achieved by present form-finding process in a few of remark-
able iterations. Hence, compared to other available methods only
dealing with super stable tensegrity structures [23,25] that are
more restrictive in the real mechanical structures, the proposed
form-finding is more efficient and versatile. The dimension of the
structure, the connectivity between the nodes and the type of
each member are the only required information in this numeri-
cal form-finding procedure. The spectral decomposition of force
density matrix and the singular value decomposition of the equi-
librium matrix are performed iteratively to find the feasible sets
of nodal coordinates and force densities which satisfy the nec-
essary minimum rank deficiency conditions of force density and
equilibrium matrices, respectively. In other words, any assump-
tion about initial nodal coordinates or element lengths, material
properties, structural symmetry and the positive semi-definite con-
dition of the force density matrix is not necessary in the proposed
form-finding procedure, which is considered as the advantage
of this method compared to the available ones. An approach of
defining a sole configuration of free-form tensegrity structures by
specifying an independent set of nodal coordinates is provided,
which indicates that the geometrical and mechanical properties
of the structure can be at least partly handled by the proposed
method. The evaluation of the eigenvalues of tangent stiffness
matrix is also included for checking the stability of the tensegrity
structures.

2. Force density method

2.1. Fundamental assumptions

It is acknowledged known that the form-finding of a tenseg-
rity structure is very similar to that of a cable net, because they
use almost the same fundamental assumptions listed as follows
except the last two ones that are suitable only for tensegrity
structures:

• The topology (connectivity between the nodes and members) of
the structure is known, and the geometrical configuration of the
structure can be described in terms of nodal coordinates only.

• Members are connected by pin joints.
• No external load is applied and the self-weight of the structure is

neglected.
• Both local and global bucking are not considered during the form-

finding procedure.
• The structure is free-standing without any support; i.e. there are

no dissipative forces acting on the system.

2.2. Self-equilibrium equations for free-standing tensegrity
structures

For a d-dimensional (d = 2 or 3) tensegrity structure with b mem-
bers, n free nodes and nf fixed nodes, its topology can be described
by a connectivity matrix CS ∈ Rb×(n+nf) as defined in [2]. If member

k connects nodes i and j (i < j), then the ith and jth elements of the
kth row of CS are set to 1 and −1, respectively, as follows

CS(k,p) =

⎧⎨⎩
1 for p = i

−1 for p = j

0 otherwise

(1)

The fixed nodes are preceded by the free nodes in the numbering
sequence, then CS can be divided into two  parts as

CS =
[

C Cf

]
(2)

where C ∈ Rb×n and Cf ∈ Rb×nf describe the connectivities of the
members to the free and fixed nodes, respectively.

Let x, y, z (∈ Rn) and xf, yf, zf (∈ Rnf ) denote the nodal coordinate
vectors of the free and fixed nodes, respectively, in x-, y- and z-
directions. The force density coefficients vector is denoted by q ={

q1, q2, ..., qb

}T ∈ Rb, in which each component of this vector is
the force fk to length lk ratio qk = fk/lk (k = 1, 2, . . .,  b) known as force
density or self-stressed coefficient in [34]. The force density matrix
Q ∈ Rb×b is given as

Q = diag(q) (3)

The equilibrium equations of the free nodes in each direction of
a general pin-jointed structure can be written as follows [21]

CT QCx + CT QCf xf = px (4.1)

CT QCy + CT QCf yf = py (4.2)

CT QCz + CT QCf zf = pz (4.3)

where px, py, pz (∈Rn) are the vectors of external loads applied at
the free nodes in x-, y- and z- directions, respectively.

For simplicity, matrices E ∈ Rn×n and Ef ∈ Rn×nf are defined as

E = CT QC (5.1)

Ef = CT QCf (5.2)

Note that E and Ef are constant when the force density matrix Q
is given.

From Eq. (5.1), E is always square, symmetric and singular with
a nullity of at least one since the sum of all its components in any
row or column is zero for any tensegrity structure [2].

When external load and self-weight are ignored, the tenseg-
rity systems does not require any fixed nodes. Its geometry can
be defined by the relative positions of the nodes. Thus, the system
can be considered as a free-standing rigid-body in space [34]. Eqs.
(4.1)–(5.2) becomes

Ex = 0 (6.1)

Ey = 0 (6.2)

Ez = 0 (6.3)

For simplicity, Eqs. (6.1)–(6.3) can be reorganized as

E[ x y z ] = CT QC[ x y z ] = [ 0 0 0 ] (7)

where [x y z](∈Rn×d) is a matrix of nodal coordinates for a d-
dimensional (d = 2 or 3) tensegrity structure.

As can be seen, Eq. (7) presents the relation between the force
densities and the nodal coordinates.

For simplicity, matrices Dx, Dy, Dz(∈Rb×b) are defined as

Dx = diag(Cx) (8.1)

Dy = diag(Cy) (8.2)

Dz = diag(Cz) (8.3)



Download	English	Version:

https://daneshyari.com/en/article/800768

Download	Persian	Version:

https://daneshyari.com/article/800768

Daneshyari.com

https://daneshyari.com/en/article/800768
https://daneshyari.com/article/800768
https://daneshyari.com/

