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Damage  progression  in high-strain  rate  and  impact  tests  on  articular  cartilage  is  considered.  A  new  type  of
kinetic  damage  evolution  law  is  proposed  and  used  to draw  implications  about  the  accumulated  damage
and the  coefficient  of restitution.  Based  on  the  developed  damage  model,  a  new  fracture  criterion  is
introduced.
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1. Introduction

As a living tissue, articular cartilage can be characterized in
terms of viability, e.g., using the Mankin score [18]. It is long known
that some mechanical properties of articular cartilage reflect the
degree of viability [22,31]. For instance, early osteoarthritic (OA)
degeneration of cartilage manifests itself in the decrease of inden-
tation stiffness [7,15]. On the other hand, in impact experiments,
an overloading of articular cartilage sample is accompanied by
the damage accumulation and can result in cell deaths. Thus, the
accumulation of damage in cartilage tissue and the decrease of its
viability can be viewed as two sides of the same state evolution
process.

It should be noted that there is a difference between cell viability
(i.e., how many cells are alive) and mechanical ‘viability’ (or ability
to support load), which can be regarded as the structural integrity
of tissue. It is also to emohasize that these concepts are not the
same although they may  be related and only the latter is assessed
qualitatively in the Mankin score, which is a histopathological clas-
sification of the severity of osteoarthritic lesions of cartilage [29].

We consider the damage accumulation in blunt impact and
high-rate compression experiments, which can be modeled as a
uniform one-dimensional deformation process. For the sake of
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simplicity, we neglect the effect of energy dissipation associated
with the interstitial fluid flow, as it was  shown by [11], in the short-
time deformation process, articular cartilage may  be regarded
as an elastic material. At the same time, in view of the recent
experimental evidence [9], we  discuss the extension of the impact
model with damage to account for the viscous dissipation effect.

We employ a phenomenological modeling approach [17,26]
and introduce a scalar damage variable, D, which is assumed to
be dimensionless. Following [19], one can use the hypothesis of
strain equivalence and consider first the elastic constitutive law
� = E(1 − D)ε, where ε is the strain associated with a damaged state
under the applied stress �, and E is Young’s modulus of the virgin
(undamaged) material. The question of damage modeling in biolog-
ical tissues was  considered in a number of recent studies [20,24,27].
In particular, [10] used the Kachanov–Rabotnov kinetic equation

Ḋ = C�m

(1 − D)k
, D(0) = 0, (1)

where C, m,  and k are constants, and the dot denotes the differ-
entiation with respect to time t. However, it can be shown that
the above equation does not reflect some important features of the
damage accumulation observed in experiments on articular car-
tilage. In particular, [13] documented greater matrix damage in
cartilage samples subjected to a high rate of loading (∼930 MPa/s),
compared to samples exposed to a low rate of loading (40 MPa/s).

In the present paper, based on the experimental facts, we  pro-
pose a new type of damage kinetic equation and apply it to draw
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implications, which are then checked against other experimentally
observed phenomena.

2. Kinetic equation for the damage evolution

First, we consider the ramp compression experiment [25] char-
acterized by a constant strain rate, ε̇0, between 3 × 10−5 and 0 . 7
s−1 to a peak stress between 3 . 5 and 14 MPa. Observe that for
articular cartilage samples compressed at ε̇0 = 3 × 10−5 s−1, the
peak compressive stresses 3 . 5 MPa  and 14 MPa  corresponded to
peak compressive strains ε0 = 83± 5 % (mean ± standard deviation)
and ε0 = 95± 7 %, respectively. It should be noted the deformation
of underlying bone was neglected in the sample strain eval-
uation. In what follows, we make use of the following result
[25]: mechanically induced damage to the cartilage extracellu-
lar matrix depended upon applied strain rate and peak stress,
with cracking probability being an increasing function of both
parameters.

Since for large deformations like those mentioned above, the
linear elastic constitutive law does not apply, we reformulate the
damage kinetic equation (1) in terms of strain and generalize it as
follows (see also [10,33]):

Ḋ = Cεm|ε̇|n
(1 − D)k

. (2)

Now, integrating Eq. (2) for the strain evaluation ε = ε̇0t, t ∈ (0,
t0), where t0 = ε0/ε̇0 is the time necessary to achieve a peak strain
ε0, it can be easily shown that the accumulated damage D0 = D(t0),
provided that D(0) = 0, is governed by the product εm+1

0 ε̇n−1
0 , and for

n > 1, it increases with increasing the strain rate.
Observe that in impact tests, where the strain evolution is

similar to the half-sine law variation ε = ε0 sin ωt, t ∈ (0, �/ω), the
right-hand side of Eq. (2) vanishes at the state of peak compres-
sion, where the stress is close to its peak value, that seems to be in
contradiction with the experimental observation [25] that at high
strain rates, the matrix damage appeared to be primarily a func-
tion of peak stress. However, it can be checked that according to
Eq. (2), the accumulated damage D0 = D(�/ω) is again governed by
the product εm+1

0 ε̇n−1
0 provided ω = ε̇0/ε0.

Second, as it was shown by [23] in their ramp compression tests,
the so-called “gel diffusion” rate of deformation ε̇g = 1/�g appears
to represent a threshold for the transition between low and high
strain rate “modes” of matrix and cell injury. Recall that the gel
diffusion time constant �g is introduced for articular cartilage sam-
ple treated as a biphasic poroelastic material [6] and is given by
�g = a2/(HA�), where a is a characteristic distance through which
interstitial fluid flows, HA is a characteristic elastic modulus, and �
is the hydraulic permeability in the direction of the flow. So, taking
into account the biphasic rheology, we generalize Eq. (2) as

Ḋ = C

(1 − D)k

∫ t

0

e−ε̇g(t−�) d

d�
(ε(�)m|ε̇(�)|n) d�, (3)

where the compressive strain is assumed to be positive. Note that,
generally speaking, the form of Eq. (3) was motivated by the form
of viscoelastic constitutive relations, such that for high-strain com-
pression, when ε̇g � ε̇0, Eq. (3) reduces to Eq. (2). It should be noted
that the determination of the gel diffusion time crucially depends
on the method of sample fixation (e.g., whether it is stripped of the
bone, or placed into a confining chamber to prevent the radial flow
of the interstitial fluid).

3. Damage evolution under impact loading

We  consider a cartilage sample of thickness h and radius a
impacted with a rigid impactor of mass M,  so that the equation
of the impactor motion can be written as follows:

Mhε̈ = −F, t ∈ (0,  tc),

ε(0) = 0, ε̇(0) = ε̇0.
(4)

Here, tc is the contact duration, ε is the strain in the cartilage sample,
F is the contact force, and ε̇0 = v0/h is the initial strain rate with
v0 being the initial impactor speed. Assuming that under impact
loading, articular cartilage deforms like an incompressible material
[14], and using the asymptotic solutions [1,2,4,5,8], we  represent an
approximate relation between the contact force F and the impactor
displacement εh for a thin cylindrical incompressible elastic sample
bonded to a rigid substrate as follows:

F = 3�a4

8h2
G(1 − D)ε, (5)

where G is the shear modulus of the virgin material (for an incom-
pressible material G = E/3).

The impact problem with damage is formulated by Eqs. (3), (5),
(4). In impact testing, the contact duration is usually very small and
one may  assume that ε̇g/ω � 1, where

ω =
√

3�a4G

8h3M

is a characteristic angular frequency, thus simplifying Eq. (3) to the
form of Eq. (2). For example, tc is about 0 . 5 ms for the impactor
mass M = 100 g and the initial impactor speed v0 = 1.25 ms−1 cor-
responding to a free drop of the impactor from a hight of 80 mm
above the cartilage surface [9]. Correspondingly, it can be shown
that in the range of small damage impacts, the accumulated damage
D0 = D(tc) is governed by the product ω−n−1ε̇m+n

0 , which is propor-
tional to vm+n

0 M(m+n)/2. The latter quantity is reduced to the impact
energy Mv2

0/2, if m = 1 and n = 1.
In their experiments on matrix damage and chondrocyte viabil-

ity, [16] observed an almost linear relation between the measured
chondrocyte viability and the impact energy (defined as the initial
kinetic energy of the impactor). Thus, assuming a proportionality
between the viability and the quantity 1 − D, representing the resid-
ual resource of the damaged material, we should have an almost
proportionality of D to the impact energy in the range of experi-
mental data. On the other hand, approximately the same result is
predicted by our model (3)–(4) provided m = n = 1. It is interesting
to note that in the case n = 1, the parameter C, which enters Eqs. (2)
and (3) is dimensionless.

Fig. 1 presents the experimental data of [16] and the theoretical
predictions based on Eq. (3) in the case k = m = n = 1 with the only
fitting parameter C (which is taken to be 1 . 82) for the following
set of model parameters h = 1 .8 mm,  a = 2 .5 mm,  M = 500 g, G = 385
MPa, and ε̇g = 10−3 s−1.

Now, let us return to Eq. (4) and integrate it with Eq. (5) taken
into account, thus arriving at the first integral

1
2

(ε̇2 − ε̇2
0) + ω2

∫ ε

0

(1 − D)ε dε = 0. (6)

Recall [3,28] that the contact duration, tc, is determined as the
time event t = tc, when the contact reaction, −F(t), vanishes. In
view of Eq. (5), this condition reduces to the equation ε(tc) = 0.
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