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a  b  s  t  r  a  c  t

The  critical  buckling  loads  of  pinned-pinned  and  cantilever  beams  are  computed  using the  equations  of
three-dimensional  elasticity  rather  than  typical  beam  theories.  These  loads  are  influenced  both  by the
nature  of  the  assumed  displacement  field  over  the beam  cross-section  and  by  the inclusion  of  the  terms
from  the  full  constitutive  tensor.  Of special  interest  are  beams  that are  either  anisotropic  or  auxetic.  For
anisotropic  beams,  an  increased  ratio  of longitudinal  to  shear  modulus  for cantilevered  beams  increases
the generation  of  shear  buckling  rather  than  flexural  buckling.  For  isotropic  auxetic  beams,  the values  of
Poisson  ratio  that define  the  limit  between  buckling  loads  that  approach  the  classical  buckling  load  from
above  or  below  are  discussed.

© 2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

The buckling of beams under axial compression would make any
short-list of well-studied problems of mechanics beginning with
the achievement of Euler [1,2]. The voluminous works of Timo-
shenko [3] and Bǎzant and Cedolin [4] give extensive reviews of
the historical developments along with the fundamental behavior
of these shapes. More recent works have presented results using
several beam theories [5,6].

Most theoretical representations of beam buckling represent the
mechanics of deformation of the beam by reduced one-dimensional
theories. These representations assume displacement fields that
are relatively simple over the beam cross-section. There is of course
very good reason for these simplified fields: they capture the basic
behavior of the beams under these loading conditions. However,
there are limits to these models as the beam transitions from being
long and slender to geometries that are somewhat less so. The
intent of this effort is to demonstrate at what level more complex
fields might play a role.

The variance with the classical buckling loads is even more
broad when the beam is composed of materials that are either
anisotropic or auxetic. In the former case, the mismatch between
the elastic moduli that usually dominate buckling behavior can
become larger in magnitude. This increases the differences in
predicted results between results of elementary beam theory,
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shear deformation theory, and elasticity theory. Auxetic materials,
which are characterized by a negative Poisson ratio, can also
generate behavior that deviates strongly from expected behavior
as predicted by the elementary beam theory as it is usually applied
to long, slender isotropic beams.

In this study, three-dimensional continuum-based models are
used that generalize the deformation for a general constitutive ten-
sor. Ritz-based approximations to virtual work statements are used
to predict the buckling loads for the hinged-hinged beam and the
cantilever beam under axial compression. The differences between
the buckling load predictions for various theories are discussed for
these cases.

2. One-dimensional solutions

For a beam under hinged-hinged (or simple-support) conditions
with an applied axial load, the minimum load that initiates a buck-
led state is commonly referred to as the critical buckling load or the
Euler buckling load, and is given by [3]

PE = �2EI

L2
(1)

This load is generated by solutions of equilibrium of the beam as
represented by classical or Euler–Bernoulli beam theory, which
assumes that only axial strains along the beam length are non-
zero. This formula has excellent accuracy provided that the beam
length is sufficiently large relative to the dimensions of the beam
cross-section. In pure axial compression, the magnitude of the
applied load is of course limited by the value that would cause axial
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deformation equal to the length of the beam, or an axial strain of
−1. This implies that the load must be less than the cross-sectional
area multiplied by the elastic modulus along the beam axis.

When the beam under consideration is somewhat more stocky,
adjustments can be made in predicting the axial load that will gen-
erate failure. Humer [7] has recently given an excellent overview
of the one-dimensional problem of an isotropic beam where shear
deformation as modeled by Timoshenko beam theory is incor-
porated into the displacement field. The problem that includes
extension, bending, and shearing is usually termed the gener-
alized elastica. Humer denotes the three stiffnesses for these
deformations via one-dimensional models that include the elastic
longitudinal modulus E, the shear modulus G, the cross-sectional
area A, and the second moment of the area about the axis of bending
I. As the shear deformation formulation incorporates the Timo-
shenko assumption, this theory also requires the use of the shear
coefficient ks, which for the rectangular sections considered in this
study is taken to be ks = 10(1 + �)/(12 + 11�) where � is the Pois-
son ratio. This formula was used by Humer [7] and was originally
proposed by Cowper [8].

Humer generated a number of exact results for such a theory
for several types of boundary condition. These were presented in
terms of the dimensionless parameters given by

� = L

√
A

I
(2)

that characterize the length, and by

� = ksG

E
= ks

2(1 + �)
(3)

that helps to characterize the relationship between the bending
stiffness of the beam (dominated by E) and the shear stiffness (dom-
inated by G). Humer also noted the possibility that the value of
the Poisson ratio could be negative. Such solids, which came to be
known as auxetic, have been discussed by Love [9] in 1944 and
more recently by Lakes [10] for various foam structures and more
recently by Lim [11,12] in buckling applications.

2.1. The hinged-hinged beam

For the case of both ends pinned, which is usually denoted either
by the phrases simple support or hinged-hinged beam, Humer [7]
found that the ratio between the various buckling loads and the
classical Euler buckling load was given by
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Here n refers to the mode number associated with the buckling
load, which is typically associated with the displaced shape given
by

v(z) = A sin
n�z

L
(5)

Here v(x) is the transverse displacement of the beam centroid along
the length of the beam in the z direction.

As the beam length increases relative to the dimensions of the
cross-section, nearly all beam theories trend to the value of the
Euler buckling load. This means that the ratio of Pcr/PE approaches
the values of 1, 4, 9, and so on for modes 1, 2, and 3 since the buckling
loads are a function of the square of the mode number [3]. In this
work, most of the comparisons are confined to the first two buckling
modes for the hinged-hinged beam.

2.2. The cantilever beam

For a beam under cantilever support, one end of the beam is fixed
and the other is free excepting the uniform compression load. For
this loading, Humer finds the buckling ratio for the shear deforma-
tion theory to be given by
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In the thin-beam limit, the buckling load approaches the value
given by the Euler theory in a manner similar to the hinged-hinged
beam, but for this type of boundary condition combination the
buckling loads are smaller. The first two values approach 1/4 and
9/4 of PE for reasons explained by Humer [7].

For both support conditions, there is a shift in behavior of the
Timoshenko beam model predictions as the parameter � tends to
unity. Humer [7] explains this behavior in detail, but for purposes
of this work it is sufficient to note that when � = 1 the critical buck-
ling load changes in behavior for isotropic auxetic materials. As the
beam length increases, Pcr approaches PE either from below (when
� < 1) or from above (when � > 1). This point is expanded upon in
the sequel.

3. Continuum model: linear elasticity

A three-dimensional solid is considered whose cross-section
coordinates are defined in the (x1, x2) or (x − y) plane with a much
larger dimension in the x3 or z axis with a length of L. The beam is
assumed to be composed of an anisotropic material whose princi-
pal material axes are aligned with the (x, y, z) axes. For purposes of
this study, this material is assumed to be orthotropic.

3.1. Governing equations and weak form

The governing equations used for this study are the three-
dimensional equations of linear elasticity with an orthotropic
constitutive tensor. These are not solved explicitly at each point in
the domain, but instead approximate solutions are sought for their
weak form as expressed within the Principle of Virtual Work [13]
or equivalent statements of total potential energy [4]. For so-called
beam-columns under an axial force P, the total potential energy can
be written as

� = U − W (7)

where U is the strain energy and W is the potential energy of the
body force vector f, the surface traction vector t excluding the axial
force, and the applied axial force P, with

U =
∫
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Here �ij are used to denote components of Cauchy stress, �ij are the
components of infinitesimal strain, ui are the components of dis-
placement, A is the cross-sectional area of the solid perpendicular
to P, and 	L  is the distance over which the axial force P moves. In
using indicial notation, it is assumed that the 1, 2, and 3 directions
are (x1 = x, x2 = y, and x3 = z) and that the long direction of the solid
is the z-direction.

In an elasticity context, the axial force P is assumed to act
through a uniform compressive normal traction P/A over the entire
face of the beam cross-section. This means that each element
of axial force (P/A)dxdy moves an amount that varies with the
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