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a  b  s  t  r  a  c  t

Chaotic  vibration  of  beams  resting  on  a foundation  with  nonlinear  stiffness  is  investigated  in this  paper.
Cosine–cosine  function  is  employed  in  modeling  of the  reciprocating  load.  The  equation  of  motion  is
derived  and  solved  to obtain  corresponding  Poincaré  section  in  phase–space.  Lyapunov  exponent  as
a  criterion  for chaos  indication  is  obtained.  Dynamic  behavior  of  the  beam  is  examined  in  resonance
condition.  Homoclinic  orbits  are  captured  and  their  corresponding  Melnikov’s  functions  are  established.
A  parametric  study  is  then  carried  out  and  effects  of  linear  and nonlinear  parameters  on  the  chaotic
behavior  of  the system  are studied.
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1. Introduction

Chaotic behavior of nonlinear dynamical systems has received
very much interest both from scientists and engineers. This focus
generally is raised owing to losing predictability and consequent
controllability of the dynamic systems. Among these dynamical
systems, continuous types such as beams, plates, and shells gen-
erally have wider range of applications and subsequent research
load.

Chaotic vibration of an Euler–Bernoulli beam subjected to
simultaneous transversal and impact loading was studied by Awre-
jcewicz et al. [1]. Vestroni [2] analyzed the dynamic behavior of a
simply supported beam subjected to an axial transport of mass.
He obtained a homoclinic orbit in a high dimensional phase space
and studied its stability and collapse. Chaotic motion of viscoelastic
beams with geometric and physical nonlinearities has been stud-
ied by Chen et al. [3]. They employed phase plane trajectory, power
spectrum and Lyapunov exponents to investigate chaotic behavior
of the beam. Chaotic motion of axial compressed nonlinear elas-
tic beam subjected to transverse load has been studied by Zhang
et al. [4]. Using the Melnikov’s theorem they obtained threshold
values of the load parameters in which, chaos may  occur in the sys-
tem. Liu et al. [5] analyzed symmetrical, asymmetrical, and chaotic
responses of elastic–plastic beams under symmetrical impulsive
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loading. Phase plane trajectories, Poincaré maps and power spec-
tral density diagrams were used to identify both symmetrical and
asymmetrical chaotic vibrations. Chaotic dynamics of the soften-
ing Duffing oscillator with multi frequency external periodic forces
have been studied by Lou et al. [6]. They used Melnikov’s approach
to obtain heteroclinic responses and to find necessary and sufficient
conditions for chaos appearance.

Calio and Elishakoff [7] presented closed-form trigonometric
solutions for inhomogeneous beam-columns on elastic founda-
tions. Sunil [8] investigated the dynamic response of a Timoshenko
beam under repeated pulse loading. Effects of the beam tip rub
forces on the dynamic stability of a spinning blade with inter-
mittent rub were studied in that reference. Chaotic response of
large-amplitude vibration of beams has been analyzed by Han and
Zheng [9]. They used Melnikov’s function method to obtain the
chaotic critical conditions for the single mode model. Yang and
Chen [10] employed Poincaré approach and investigated bifurca-
tion and chaos in an axially accelerating viscoelastic beam applying
Kelvin–Voigt model. Melnikov’s method was  used to determine
safe and unsafe zooms in the force-parameter space by Santee
et al. [11]. The Poincaré map, the Fourier spectra, the maximum
Lyapunov exponents and the principal component analysis were
used by Nagai et al. [12] to identify chaotic behavior of thin-walled,
post-buckled beams subjected to periodic lateral accelerations. Bat-
telli et al. [13] studied a PDE modeling of a compressed beam
with small friction and subjected to a periodic forcing of small
amplitude. Effects of the temperature, the axial load and the envi-
ronmental damping on the chaotic behavior of shape memory
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alloy beams were investigated by Qingquan [14]. Three different
methods including Galerkin procedure, harmonic balance approach
and Runge–Kutta–Gill method have been employed by Yanagisawa
et al. [15] to study the chaotic vibrations of a clamped-supported
beam with a concentrated mass subjected to lateral periodic
acceleration. Ghayesh and Balar [16] studied an axially moving vis-
coelastic Rayleigh beam with cubic nonlinearity. They investigated
effects of different parameters on the vibrational behavior, stability
and bifurcation points of the system through a parametric study.
They [17] also investigated the stability characteristics of an axially
accelerating string supported by an elastic foundation.

Akour [18] analyzed simply supported nonlinear beam resting
on linear elastic foundation and subjected to harmonic loading.
Using the method of multiple scales, Amer and Hegazy [19] exam-
ined the nonlinear behavior of a string-beam coupled system
subjected to parametric excitation. They carried out a numeri-
cal simulation to study the steady state response, stable solutions
and chaotic motions. Onozato et al. [20] analyzed chaotic vibra-
tions of a post-buckled L-shaped beam with an axial constraint.
Chaotic dynamics of flexible Euler–Bernoulli beams has been stud-
ied by Awrejcewicz et al. [21]. They analyzed time histories, phase
and modal portraits, autocorrelation functions, the Poincaré and
pseudo-Poincaré maps, signs of the first four Lyapunov exponents,
as well as the compression factor of the phase volume of an attrac-
tor. Bifurcation and chaotic behavior of an axially accelerating
viscoelastic beam in supercritical regime has been studied by Ding
et al. [22]. They used Galerkin truncation as well as the differen-
tial and integral quadrature method to investigate the nonlinear
dynamic behavior of the system.

Nonlinear flexural waves and chaotic behavior in Timoshenko
beams was studied by Zhang and Liu using the method of Jacobi
elliptic function expansion [23]. Younesian and Norouzi [24] ana-
lyzed forced vibration analysis of spinning disks subjected to
transverse forces. They used Galerkin’s approach in order to solve
the equation of motion of the rotating disk. They reported that
the increasing in the spinning speed leads to increase in natural
frequencies of the spinning disk. Frequency analysis of the non-
linear viscoelastic plates subjected to subsonic flow and external
excitation was studied by Younesian and Norouzi [25]. They used
Bernoulli’s principal to model the pressure acting on the plate
surface. Galerkin’s approach was used in their study in order to
transform the partial differential equation of motion of the plate
into the ordinary differential equation. They found the critical
speed of the flow in which the plate can exhibit unstable behav-
iors. Awrejcewicz and Pyryev [26] used Melnikov’s function in
order to predict the chaos in the Duffing-type system with friction.
They showed that the obtained corresponding Melnikov’s function
can be simplified in some cases to yield analytical conditions for
chaos prediction. Their results have been verified by numerical
analysis. Prediction of chaos in the rotated Froude pendulum has
been performed analytically by Awrejcewicz and Holicke [27]. They
studied a rotated Froude pendulum with coloumb-type friction, vis-
cous damping and external harmonic excitation to analyze chaotic
dynamics in such a system. Melnikov’s approach has been used by
them to predict chaos behavior of the system and the analytical
results have been confirmed by numerical simulations. Andrianov
et al. [28] developed modified Muravskii model for elastic founda-
tion. They established a frequency equation for the vibration of an
engine seating and equation for the pressure under the bottom of
the engine.

Apart from various types of structures under machining and fin-
ishing process, nowadays many other nano and microstructures
are found to be influenced by reciprocating loading. In the present
study we investigate potential chaotic oscillations in beams rested
on a nonlinear foundation and subjected to a reciprocating type
of loading. Corresponding equation of motion are solved using the

Fig. 1. The beam on the nonlinear elastic foundation subjected to reciprocating
loading.

Galerkin’s method. Poincaré section and Lyapunov exponent are
taken into account. Corresponding Melnikov’s function is devel-
oped to determine analytical conditions of chaotic motion. A
parametric study is carried out over a range of input parameters
and effect of those on the dynamic characteristic behavior of the
system is investigated.

2. Governing equation of motion

Fig. 1 shows the beam rested on a nonlinear elastic foundation
which consists of a pair of parallel linear and nonlinear springs. A
concentrated load F goes toward from the origin (x = 0) and comes
backward to that point. The beam has simply supported bound-
ary conditions and has been expected to follow Euler–Bernoulli
assumptions. Moreover, nonlinear spring has been assumed to
behave as the rule F = Kw3. Equation of motion for the beam can
be expressed as [29–31]
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In which E denotes the modulus of elasticity, I is moment of inertia,
� is mass density, A is cross section area, L stands for the beam
length and N denotes the compressive axial force. Furthermore, K1
and K2 are the linear and nonlinear stiffness respectively.At the first
one can introduce the dimensionless parameters as
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Substituting the parameters of Eq. (2) into Eq. (1) gives the dimen-
sionless form of the governing equation as
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In which prime (.)′ denotes the derivatives with respect to dimen-
sionless time t*.The boundary conditions associated with Eq. (3) are
in the form

w∗|x∗=0,1 = 0
∂2

w∗

∂(x∗)2
|x∗=0,1 = 0 (4)

According to Galerkin’s method, the solution of Eq. (3) can be
expressed as

w∗(x∗, t∗) =
∞∑

n=1

Xn(x∗)qn(t∗) (5)

where Xn(x*) is n-th mode shape and qn(t*) is n-th modal coefficient.
Because modal analysis of the beam and extracting mode shapes
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