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a  b  s  t  r  a  c  t

In an effort  to construct  a design  tool  for a mechanical  spring  featuring  highly  nonlinear  spring  stiffness,
compression  of  truncated  elastomeric  cones  has  been  studied  using  nonlinear  finite  element  analyses
involving  neo-Hookean  material  law  and  contact  elements.  Series  of  finite  element  models  of  various
geometric  aspect  ratios  of truncated  cones  were  calculated  to form  a fundamental  database  of the  design
tool.  It was  found  that  the  compressive  stiffness  of  the  rubber  cone  can  be non-dimensionalized  with
respect  to the elastic  modulus  and  a  characteristic  length  of the  cone.  While  the  stiffness  of  the  truncated
rubber  cone  appears  more  linear  between  0 and  5%  of  the  compression  ratio,  the stiffness  increases
exponentially  with  progressing  compression  at  higher  compression  ratios.  Regression  equations  of  the
non-dimensional  axial  force  and  spring  stiffness  were obtained  with  reasonable  accuracy,  compared  with
the  original  finite  element  data.

©  2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Mechanical springs with highly nonlinear force-displacement
response are useful in many applications. In the area of truck sus-
pension, an elastomeric pyramid was designed as a load cushion
to provide a progressive spring rate [1]. A novel suspension strut
was developed for providing constant bouncing frequency for a
wide range of vehicle load [2]. In that work, to acquire the highly
nonlinear spring stiffness much needed, the suspension strut was
designed with a series of elastomeric cones stacked for compres-
sion. An innovative electromagnetic actuator was also developed to
provide controlled movement that responds linearly to the input
electric current [3]. To achieve that goal, the required highly non-
linear spring stiffness was again achieved by an elastomeric cone
under compression. The nonlinear behavior of tensegrity prisms
under compression has also received attention. Theoretical treat-
ment has found that in the regime of large displacement, softening
can happen as well as stiffening, depending on the aspect ratio of
the structure, the applied prestress, and the material properties [4].
Experimental data have also verified the above theoretical find-
ings [5]. All in all, structures with nonlinear stiffness can find many
useful applications, and are worth further exploring.

∗ Corresponding author. Tel.: +886 3 559 3142; fax: +886 3 559 5142.
E-mail address: cL4e@must.edu.tw (C.-H.G. Li).

It is the goal of this paper to document the effort toward
constructing a design tool for creating a nonlinearly responsive
spring based on rubber cones in series. Such stacks of rubber
cones may  work as a nonlinear cushion strut with sufficient stroke
length and desirable spring characteristics. When a spring responds
nonlinearly, although the spring stiffness varies as the deforma-
tion progresses, the combined spring stiffness of multiple springs
in series can still be calculated based on the simple series law.
As shown in Fig. 1, for any spring combination in series, the
total displacement of the stack of springs is the summation of
the deformation of each individual spring. Thus, the resulting
force–displacement curve of the springs in series is the addition
of the participating spring curves in the displacement at any given
force. For example, while combining spring A and spring B in series,
assuming the spring displacements di are nonlinear functions of the
axial force F as,

da = fa(F) and db = fb(F) (1)

Upon combining the springs in series, the total displacement ds

is the sum of each individual displacement. And by differentiating
the displacement by the force,

dds

dF
= dda

dF
+ ddb

dF
(2)

The series law for spring stiffness still holds as,

1
ks

= 1
ka

+ 1
kb

(3)
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Fig. 1. Illustration of the series law applicable for nonlinear spring curves.

Fig. 2. Schematic of a cylinder under uniaxial compression: (a) original shape, (b)
deformed shape with the shortened height being �L.

2. Similarity analysis

Similarity of the cone stiffness plays an important role in
constructing a universal design tool. Closed-form solutions for a
rubber cone under tension of a concentrated force at its apex were
attempted [6]; however, for the compression case, no results have
been published. To gain insight in this issue, simple compression
of a rubber cylinder was investigated here. Assuming an incom-
pressible neo-Hookean cylinder as shown in Fig. 2, under uniaxial
compression of �,  the height is compressed to be �L, and the diam-
eter becomes L/

√
�.

The strain energy function of the neo-Hookean material law of
incompressible solid with J = 0 is,

W = C1
(

�2
1 + �2

2 + �2
3 − 3

)
, (4)

where C1 denotes a constant equivalent to one-half of the initial
shear modulus of the elastomer, and �i denotes the principal stretch
ratios. Under uniaxial compression, the external work is equal to
the internal strain energy as,∫

Fd� = W · V = �

4
C1

[
L(L2 − 2�L + �2) + 2L4

L − �
− 3L3

]
(5)

The force can be derived by differentiating Eq. (5) as,

F = d(W · V)
d�

= �

4
C1

[
L(−2L + 2�) + 2L4

(L − �)2

]
(6)

Table 1
Dimensions of the three cases of cones for the similarity study. R is the large radius,
r  is the small radius, and h is the height of the truncated cone.

Case R r h

1 5 0.5 5
2  10 1 10
3  20 2 20

A non-dimensional function is achieved as,

F

L2C1
= �

2

(
1

�2
− �

)
(7)

The tangent stiffness is the slope of the force–displacement
curve,

K = dF

d�
= �

4
C1L

[
2 + 4

�3

]
(8)

A non-dimensional function for the stiffness can also be
achieved as,

K

LC1
= �

2

[
1 + 2

(1 − ı)3

]
, (9)

where ı denotes the compression ratio, which is equal to 1 − �. Note
that when � is very small, namely � ≈ 1, K/LC1 in Eq. (9) becomes
1.5�, which approaches the small strain solution for compressed
cylinders.

To verify the same similarity characteristics of Eqs. (7) and (9)
on the compressed cones, finite element analyses were performed
on three similar cones. The dimensions of the cones studied are
shown in Table 1. Large strain finite element analyses involving
incompressible neo-Hookean material and contact elements were
adopted for the calculation. Detailed description of the finite ele-
ment models is reported in Section 3. Results as shown in Table 2
reveal the same similarity characteristics previously found for com-
pressed cylinders. By non-dimensionalizing the spring force with
respect to the square of the large radius and C1, the resulting values
are almost identical at every compression ratio. Spring stiffness is
also linearly proportional to the characteristic length of it.

3. Finite element analysis

To construct a database of the non-dimensional spring curves
for a range of rubber cones, a series of finite element analyses were
performed. 20 cases listed in Table 3 were calculated. The process
of compressing each rubber cone up to 50% of its original height
was simulated. The original height of every truncated cone was set
at 1 cm.  The small radius r varies from 0.1 cm to 0.5 cm.  The large
radius R varies from 0.8 cm to 3.2768 cm.  The finite element models
involved the hyper-elastic material model, large strain, and contact.
Finite element software ANSYS 14.0 was used for the calculation
with the nonlinear solution procedure turned on [7]. Neo-Hookean
material law was  used for its simplicity and ease to be directly
linked to the Young’s Modulus [8]. The compressibility parameter d

Table 2
Non-dimensional spring force and stiffness for the three cones studied for similarity characteristics.

Spring force Spring stiffness

Compress ratio (%) F/R2C1 Compress ratio (%) K/RC1

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

2 0.044 0.044 0.043 1 2.20 2.19 2.17
10  0.260 0.260 0.260 4 2.70 2.70 2.70
20  0.704 0.704 0.703 15 4.44 4.44 4.44
30  1.497 1.497 1.497 25 7.94 7.94 7.94
40  3.080 3.080 3.080 35 15.83 15.83 15.83
50  6.971 6.972 6.972 45 38.91 38.91 38.91
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