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a  b  s  t  r  a  c  t

This  paper  represents  a continuation  of  the  author’s  previous  work  which  deals  with  an  analytical  model
of thermal  stresses  which  originate  during  a cooling  process  of an  anisotropic  solid  elastic  continuum.  This
continuum  consists  of  anisotropic  spherical  particles  which  are  periodically  distributed  in  an anisotropic
infinite  matrix.  The  infinite  matrix  is imaginarily  divided  into  identical  cubic  cells  with  central  particles.
This  multi-particle–matrix  system  represents  a model  system  which  is  applicable  to two-component
materials  of  the  precipitate–matrix  type.  The  thermal  stresses,  which  originate  due  to different  thermal
expansion  coefficients  of  components  of  the  model  system,  are  determined  within  the  cubic  cell.  The
analytical  modelling  results  from  fundamental  equations  of  continuum  mechanics  for  solid  elastic  con-
tinuum  (Cauchy’s,  compatibility  and  equilibrium  equations,  Hooke’s  law).  This  paper  presents  suitable
mathematical  procedures  which  are  applied  to the  fundamental  equations.  These  mathematical  proce-
dures lead  to  such  final  formulae  for  the  thermal  stresses  which  are  relatively  simple  in  comparison
with  the final  formulae  presented  in  the  author’s  previous  work  which  are  extremely  extensive.  Using
these  new  final  formulae,  the numerical  determination  of  the  thermal  stresses  in real  two-component
materials  with  anisotropic  components  is  not  time-consuming.

© 2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

This paper represents continuation of the author’s paper [1]
which deals with analytical modelling of thermal stresses in
two-component materials of precipitate-matrix with anisotropic
components. This analytical modelling results from fundamental
equations of solid elastic continuum mechanics, i.e. Cauchy’s, com-
patibility, equilibrium equations which are derived by the spherical
coordinates [r, ϕ, �], and from Hooke’s law for an anisotropic solid
continuum. Mathematical procedures presented in [1], which are
applied to these fundamental equations, leads to dependences of
tangential and shear stresses on a radial stress. Consequently, a final
differential equation in terms of the radial stress is determined.
Finally, a solution for the radial stress, and then solutions for the
tangential and shear stresses are derived. However, these mathe-
matical procedures lead to an extensive formula for the radial stress
�rq = C1qr�1q + C2qr�2q in the spherical particle (q = p) and the matrix
(q = m).  The exponents �1q, �2q which represents real roots of a char-
acteristic equation of the final differential equation are functions of
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161 coefficients, c1q, . . .,  c161q, where ciq (i = 1, . . .,  161) is a func-
tion of the variables ϕ, � [1]. Numerical determination of the radial,
tangential and shear thermal stresses in anisotropic components of
two-component materials is thus extremely time-consuming. The
same is also valid for numerical determination of thermal-stress
induced phenomena, e.g. cracking, limit state determination, and
energy barrier, strengthening, which consider curve and surface
integrals of thermal-stress induced energy density, respectively, as
presented in [2,3].

This paper presents such mathematical procedures which lead
to dependences of radial, tangential and shear stresses on a radial
displacement. Consequently, a final differential equation in terms
of the radial displacement is determined. Finally, a solution for
the radial displacement, and then solutions for these stresses are
derived. With regard to Eq. (27), the exponents �1q, �2q are are
functions of 51 coefficients, c1q, . . .,  c51q, where ciq (i = 1, . . .,  51) is
a function of the variables ϕ, � (see Eqs. (34), (35)).

This reduction of number of the coefficients leads to a sig-
nificant reduction of time which is required for the numerical
determination of these comprehensive analytical results (i.e. the
thermal strains, thermal stresses and the thermal-stress induced
phenomena mentioned above) for components of two-component
materials [2,3]. Within the numerical determination, material
parameters of a two-component material are substituted by their
numerical values. Considering 15 formulae for the coefficients c1q,
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Fig. 1. The multi-particle–matrix system imaginarily divided into identical cubic
cells with a central spherical particle in the point O of the Cartesian system (Ox1x2x3),
where a dimension of the cubic cell is identical to the inter-particle distance d, and
R1 is the particle radius.

. . .,  c51q (q = p, m)  (see Eqs. (34), (35)), the substitution of numerical
values for material parameters can be easily performed by sev-
eral simple commands of a suitable programming language (e.g.
Fortran, Pascal). Additionally, this substitution can be assumed to
take shorter time in comparison with the use of numerical simu-
lation methods (e.g. the finite element method). Precise numerical
results of this analytical (mathematical) model are preferable to
approximate numerical results of numerical simulation methods
(e.g. the finite element method). Additionally, these precise numer-
ical results (e.g. for stresses, strains) can thus represent boundary
conditions for the numerical simulation methods which are used
for complex models. Finally, this paper is also useful for those mate-
rial scientists which are not experienced in numerical simulation
methods.

Cell model. As presented in [1], the two-component materials
of finite dimensions are replaced by the infinite multi-particle-
matrix system shown in Fig. 1. This model system consists of
anisotropic spherical particles which are periodically distributed
in an anisotropic infinite matrix. The infinite matrix is imaginarily
divided into identical cubic cells with a central spherical particle.

The cubic cell represents such part of the multi-particle–matrix
system which is related to one spherical particle. The inter-particle
distance d, the particle radius R1 and the particle volume frac-
tion v = (4�/3)(R1/d)3 ∈ (0,  �/6〉 [1], which represent parameters
of the cubic cell, are microstructural parameters of two-component
materials of the precipitate–matrix type. The thermal stresses are
investigated within the cubic cell, and thus represent functions of
the microstructural parameters. This ‘cell approach’ is usually used
within mathematical procedures which are applied to analytical
modelling of periodic model systems [4].

Coordinate system. The thermal stresses are derived in the arbi-
trary point P along the axes x′

1, x′
2, x′

3 of the Cartesian system
(Px′

1x′
2x′

3) (see Fig. 2). A position of the point P with respect to the
Cartesian system (Ox1x2x3) is determined by the spherical coordi-
nates [r, ϕ, �], where r = |ŌP| is length of the abscissa |OP|, and O is
a centre of the spherical particle (see Fig. 1). The axes x′

1 and x′
2, x′

3
represent radial and tangential directions, respectively.

The thermal stresses are then functions of [r, ϕ, �]. The spher-
ical coordinates are used due to the fact that the particles of the
multi-particle–matrix system are spherical. Due to the symmetry
of the cubic cell, the thermal stresses are sufficient to be investi-
gated within one eighth of the cubic cell, i.e. for ϕ, � ∈ 〈0, �/2〉, where

Fig. 2. The axes x′
1 = OP and x′

2‖x1x2, x′
3 defining radial and tangential directions

regarding the Cartesian system (Px′
1x′

2x′
3), respectively, and the arbitrary point P with

a  position determined by the spherical coordinates [r, ϕ, �] regarding the Cartesian
system (Ox1x2x3) (see Fig. 1). O is a centre of the spherical particle (see Fig. 1), and x′

2,
x′

3 are tangents to a surface of a sphere with the radius r = |ŌP| representing length
of  the abscissa |OP|.

r ∈ 〈0, R1〉 for the spherical particle and r ∈ 〈R1, rc〉 for the cell matrix,
respectively, and rc is given by Eq. (33)).

Notation. The notation x′
1, x′

2, x′
3 instead of the conventional nota-

tion xr, xϕ , x� (see Fig. 2), respectively, is used due to the notation
which is used within the mathematical procedures in Section 3
(see e.g. the sum symbol

∑3
i=1 in Eqs. (14)–(16)). Consequently,

with regard to x′
1 = xr , x′

2 = xϕ , x′
3 = x�, the conventional notation

for the thermal-stress induced radial displacement urq is replaced
by u′

1q. Similarly, the radial stress �rq and the radial strain εrq, is
replaced by � ′

11q and ε′
11q, respectively. The tangential stresses �ϕq,

��q and the tangential strains εϕq, ε�q are replaced by � ′
22q, � ′

33q

and ε′
22q, ε′

33q, respectively. Finally, the shear stresses �rϕq, �r�q,
�ϕ�q and the shear strains εrϕq, εr�q, εϕ�q are replaced by � ′

12q, � ′
13q,

� ′
23q and ε′

12q, ε′
13q, ε′

23q, respectively.
The radial displacements u′

1p for q = p and u′
1m for q = m are

related to the spherical particle and cell matrix, respectively. The
same is also valid for the radial stress � ′

1q, the tangential stresses
� ′

2q, � ′
3q and the shear stresses � ′

12q, �13q in the spherical particle
(q = p) and cell matrix (q = m).

2. Fundamental equations

The Cauchy’s equations determine relationships between
strains and displacements of an infinitesimal part of a solid con-
tinuum [5]. The equilibrium equations which are related to the
axes x′

1, x′
2, x′

3 are based on a condition of the equilibrium of forces
which act on sides of this infinitesimal part [5]. Due to the spher-
ical coordinates [r, ϕ, �], the infinitesimal part is represented by
an infinitesimal spherical cap with the surfaces Sr and Sr+dr with
the surface area Ar = r2 dϕ d� and Ar+dr = (r + dr)2dϕ d� at the radii r
and r + dr,  respectively. The axis x′

1 represents a normal of Sr and
Sr+dr. The infinitesimal spherical cap in the arbitrary point P with
the coordinates [r, ϕ, �] exhibits the radial displacement u′

1q (q = p,
m) in the Cartesian system (Px′

1x′
2x′

3). The analysis of the fact that
the infinitesimal spherical cap exhibits (in the Cartesian system
(Px′

1x′
2x′

3)) the radial displacement u′
1q only is presented in detail in
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