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a  b  s  t  r  a  c  t

Fracture  toughness  of particle  reinforced  polymers  is  affected  by  the  size  distribution  of  particles.  Dissipa-
tion mechanisms,  such  as particle  debonding,  matrix  shear  bands  or plastic  voiding,  may  be responsible  for
this behaviour.  It was  examined  whether  matrix  voiding  energy  after  particle  debonding  from  the  matrix
depends  on  particle  size  distribution.  The  stress  field  solution  of  the mechanical  problem  of a  spherical
particle  within  a spherical  elastic/perfectly  plastic  matrix  under  hydrostatic  tensile  stress  was  used.  After
particle debonding,  the yielding  energy  of the  matrix  shell  around  a single  micro-  or  nano-particle  was
calculated.  Applying  a  general  model  for  the  calculation  of toughness  together  with  an  assumed  particle
size  distribution  function  allowed  the examination  of  the  influence  of  parameters  of the  size  distribution
functions.  The  fracture  toughness  increases  with  increasing  mean  particle  diameter  and  is highest  for
composites  with  wide  particle  size  distribution  functions,  i.e. with  larger  standard  deviations.

©  2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Throughout the last decades the subject of improving the
mechanical properties of particle filled polymers received great
attention and a large body of publications exists. A survey about
this development was given by Fu et al. [1]. The particle size plays
a decisive role among parameters that influence toughness (see,
for example, Singh et al. [19]). Depending on the particle or matrix
materials used, toughness may  increase or decrease with changing
particle size distribution parameters. Modelling of toughness for
composites with particles of mean size was proposed for example
by Evans et al. [2], Huang and Kinloch [17], Hsieh et al. [3], Williams
[4], Lauke [5] and Lauke and Fu [6]. The effect of particle size distri-
bution for the debonding mechanism was first considered by Evans
and Faber [7] and was described for different debonding criterions
by Lauke [8]. Debonding is a necessary precondition for subsequent
matrix plastic voiding. The debonding stress at the particle/matrix
interface increases with decreasing particle size. This dissipation
mechanism was considered in that paper for Gaussian- and Lognor-
mal  particle size distributions. A single particle in the stress field
in front of the crack which increase towards the crack tip was con-
sidered. Consequently the debonding energy density of particles

∗ Tel.: +49 531 4658293; fax: +49 531 4658248.
E-mail address: laukeb@ipfdd.de

at a certain position is a function of the particle size distribution.
The total debonding energy was  calculated by integration of the
debonding energy density over the distance coordinate. The plastic
void growth mechanism was modelled by Williams [4], Zappalorto
et al. [9] and Lauke [10]. The model developed in the last reference
is extended herein to the case of nano- or micro-particles with a
size distribution. After particle debonding this mechanism occurs
and the corresponding energy density depends on the particle size,
which must be considered in the calculation. For the calculation of
the total dissipation energy the integration over the stress in front
of the crack was applied to circumvent problems with the integra-
tion over the distance coordinate; applying this procedure for the
calculation of the plastic void growth mechanism would lead to a
transcendental equation for the crack resistance.

The integration of energy density over the stress under consid-
eration of particle size distribution, which eventually provides an
analytical equation for the composite fracture toughness, is the
new point of the modelling herein. Sections 2 and 3 will con-
cisely summarize main equations to make it throughout under-
standable.

2. Composite fracture toughness

The energy necessary to initiate crack propagation is called
crack resistance, Rc, or fracture toughness. During crack growth,
the crack consumes energy, Rpz, to form the new fracture surface
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Nomenclature

Notations
Ak

ij
stress concentration factors

dp particle diameter
dp,mean mean particle diameter
dp,min minimum particle diameter
dp,max maximum particle diameter
Ec composite modulus
Ep particle modulus
Em matrix modulus
Fn function Fn = fnd3

p
fN probability density
fn normalized probability density
Gd specific debonding energy at the particle/matrix

interface
Np number of particles
np particle volume density
r, �, � spherical coordinats, origin at the particle centre
rp particle radius
ry radius of the yielding region in matrix
r0 radius of the composite element
Rc, Rm crack resistance of composite and matrix (energy

per unit area of crack)
Rdz specific dissipation zone energy (energy per unit

area of crack)
Rpz specific process zone energy (energy per unit area

of crack)
s ratio of hydrostatic stress to matrix yield stress,

s = �0/�my

s1, s2 integration limits for the normalized hydrostatic
stress, s

sd normalized hydrostatic stress at debonding,
sd = �0,d/�my

smin, smax minimum and maximum normalized hydrostatic
stress, s

sN standard deviation of the Gaussian normal distribu-
tion

sLN standard deviation of the Lognormal distribution
�u  difference between the total and elastic radial dis-

placement at r = r0
v particle volume fraction
ṽ particle fraction within the composite elelment, ṽ =

(rp/r0)3

vm volume fraction of matrix
V composite volume
Vp total particle volume
Wmy matrix yielding energy of the matrix shell of one

particle
 ̌ shape factor of dissipation zone

�my yielding energy density (energy per volume)
� stress concentration factor, Ap

rr = Am
rr = �

�N expected value of particle size of Gaussian normal
distribution

�LN expected value of particle size of Lognormal distri-
bution

vm, vp Poisson’s ratio of matrix and particle, respectively
	, ϕ, z radial, angular and depth coordinates with the ori-

gin at the crack tip
	y width of dissipation zone for matrix yielding
�0 hydrostatic tensile stress at the outer surface, r = r0,

of the composite element

�0,min minimum hydrostatic stress where plastic yielding
in the matrix shell around a particle starts

�d debonding stress at particle/matrix interface, corre-
sponds to the maximum radial stress component

�my matrix yield stress in uniaxial tension
�my

r , �my
�

radial and hoop stresses in yielding matrix
�p

rr, �p
r radial stress in particle

�m
rr , �m

r radial stress in elastic matrix

in the process zone. At the same time energy, Rdz, is dissipated by
matrix yielding around debonded particles within a larger zone of
width, 2	y, subsequently called the yielding zone, see Fig. 1. The
crack spreads over a small area dA of unit thickness. Summation
of the process zone energy, given by the product of matrix tough-
ness, Rm, and the relevant volume fraction, vm, and the dissipation
zone energy, as the integral over all local contributions, provides
composite fracture toughness:

Rc = Rpz + Rdz = Rmvm + 2

∫ 	y

0

�my(	)d	 (2.1)

where �my is the volume specific matrix yielding energy, 	 is the
distance coordinate from the crack tip.

Under remote mode I loading of a specimen a multiaxial stress
field is developed in front of a crack, which can be written as a
function of the coordinates (	, ϕ) as: �c,ij = (RcEc/	)1/2gij(ϕ), (i, j = x,
y, z) with Ec as the Young’s modulus of the composite.

To simplify the following derivations it was  assumed that this
multiaxial stress state at the position 	 can be approximated by a
hydrostatic tensile stress, �0:

�0(	) =
(

ˇRcEc

	

)1/2

(2.2)

where ˇ, as a zone shape and size factor, can be used as a fitting
parameter. A similar approach was  used by Zappalorto et al. [9],
who argued that the hydrostatic stress component of the crack tip
stress field is of major importance for such analysis.

The parameter  ̌ was used to consider this quantitative defi-
ciency in the true values of stresses.

Consequently the half width of the dissipation zone, 	y, is given
by:

	y = ˇRcEc

�2
0,min

(2.3)

Fig. 1. Cross sectional view of dissipation zone in front of the crack; with A: crack
area,  dA: crack extension, (	, ϕ, z): cylindrical coordinates of particle location (z
perpendicular to the plane), Wmy: matrix yielding energy around one particle.
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