
Mechanics Research Communications 66 (2015) 15–19

Contents lists available at ScienceDirect

Mechanics  Research  Communications

journa l h om epa ge: www.elsev ier .com/ locate /mechrescom

Variational  formulation  of  the  static  Levinson  beam  theory

Anssi  T.  Karttunen ∗,  Raimo  von  Hertzen
Department of Applied Mechanics, School of Engineering, Aalto University, FI-00076 Aalto, Finland

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 21 February 2015
Received in revised form 19 March 2015
Accepted 22 March 2015
Available online 27 March 2015

Keywords:
Levinson beam
Interior beam
Variational formulation
Finite element

a  b  s  t  r  a  c  t

In  this  communication,  we provide  a consistent  variational  formulation  for  the  static  Levinson  beam
theory.  First,  the  beam  equations  according  to  the  vectorial  formulation  by Levinson  are  reviewed  briefly.
By  applying  the  Clapeyron’s  theorem,  it  is  found  that the  stresses  on the  lateral  end  surfaces  of  the  beam
are  an  integral  part of  the  theory.  The  variational  formulation  is carried  out  by  employing  the  principle
of  virtual  displacements.  As  a  novel  contribution,  the formulation  includes  the  external  virtual  work
done  by  the  stresses  on  the  end  surfaces  of  the  beam.  This  external  virtual  work  contributes  to  the
boundary  conditions  in such  a way  that  artificial  end  effects  do not  appear  in the  theory.  The  obtained
beam  equations  are  the  same  as the  vectorially  derived  Levinson  equations.  Finally,  the  exact  Levinson
beam  finite  element  is  developed.

©  2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The beam and plate theories by Levinson are widely known in
the literature [1,2]. Soon after their publication, Bickford gave a
variational formulation for a beam theory [3], and Reddy for a plate
theory [4], based on the displacement fields used by Levinson [1,2].
Due to the fact that their variational formulations led to different
equilibrium equations than the vectorial derivations by Levinson,
the beam and plate theories by Levinson have since then been con-
sidered quite often as “variationally inconsistent”. In contrast to
this common belief, we show in this study that the Levinson beam
theory is actually variationally consistent with certain provisions.
Hereafter, the scope is limited to static beam theories.

Little attention has been paid to the fact that the assumed
displacement field, which is exactly the same for the Levinson
and Reddy–Bickford beam theories, is exclusively an interior field.
The use of interior kinematics means that the end effects that
decay with distance from the ends of a beam are neglected by
virtue of the Saint Venant’s principle. Note that, for example, the
Euler–Bernoulli and Timoshenko beam theories are interior beam
theories. Furthermore, the well-known two-dimensional (2D) Airy
stress function solutions for an end-loaded cantilever and a uni-
formly loaded simply-supported beam are interior solutions (see,
e.g. [5]). The modeling of the end effects in such problems requires
the use of the Papkovich–Fadle eigenfunctions [6]. In his vectorial
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formulation, Levinson accounted correctly for the interior nature of
his beam theory by using only the classical interior load resultants
– the bending moment and the shear force [1]. Consequently, the
theory provides the exact interior elasticity solutions, for example,
for the central axis deflection and the 2D stresses of an end-loaded
cantilever. As will be shown, to properly account for the interior
nature in an energy-based formulation of the Levinson beam the-
ory, one has to grasp the idea that the interior stresses of the beam
act as surface tractions on the lateral interior end surfaces of the
beam. If the work due to these surface tractions is not taken into
account, the obtained beam theory will exhibit artificial end effects.

The current study is organized as follows. In Section 2, the static
Levinson beam theory and its consistency with the Clapeyron’s
theorem are considered. In Section 3, a consistent variational for-
mulation for the Levinson beam theory is carried out. An exact
Levinson beam finite element is developed in Section 4 and con-
clusions are presented in Section 5.

2. Levinson beam theory

2.1. Stress boundary conditions and displacement field

Fig. 1 presents a beam subjected to a uniform load q, which
we have chosen as a representative loading case for our develop-
ments. The beam has a narrow rectangular cross-section of constant
thickness t and the length and height of the beam are L and h,
respectively. The load resultants M and Q stand for the bending
moment and shear force, respectively. The positive directions for
the coordinates, uniform load and the load resultants are according
to Levinson [1]. In his derivation of the theory, Levinson assumed
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Fig. 1. Homogeneous isotropic beam with a narrow rectangular cross-section. The
positive directions are according to [1]. The load resultants act at an arbitrary cross-
section of the beam.

that (i) the transverse normal stress �y is zero throughout the
beam and (ii) the Poisson effect (lateral contraction/expansion) is
not accounted for. On the basis of these assumptions, and to sat-
isfy the homogeneous boundary conditions �xy(x, ± h/2) = 0 on the
upper and lower surfaces of the beam, Levinson obtained the 2D
displacement field

Ux(x, y) = y� − 4y3

3h2

(
� + ∂uy

∂x

)
, (1)

Uy(x, y) = uy, (2)

where uy(x) is the transverse deflection of the central axis of the
beam and �(x) is the clockwise positive rotation of the lateral cross-
section at the central axis. The homogeneous boundary conditions
are satisfied in a strong (pointwise) sense on the upper and lower
surfaces of the beam. Levinson did not discuss in detail the stress
boundary conditions on the lateral end surfaces of the beam, but it
is crucial to note that in his theory the tractions at the beam ends are
not specified at each point but only through the load resultants and,
thus, the boundary conditions are imposed only in a weak sense [6].
The replacement of the true stress boundary conditions at the beam
ends by the statically equivalent weak boundary conditions (load
resultants) means that the exponentially decaying end effects of
the beam are neglected by virtue of the Saint Venant’s principle and
only the interior solution of the beam is under consideration. The
cross-sectional load resultants are calculated from the equations

M(x) = t

∫ h/2

−h/2

�xydy, Q (x) = t

∫ h/2

−h/2

�xydy (3)

and can be used to impose natural interior boundary conditions at
x = ± L/2. The interior solution represents essentially a beam section
which has been cut off from a complete beam far enough from the
real lateral boundaries at which the true boundary conditions could
be set.

2.2. General static solution

The static equilibrium equations for the Levinson beam theory
are [1]
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where E and G are the Young’s modulus and shear modulus,
respectively. In addition, A = ht and I = th3/12 are the area of the
cross-section and the second moment of the cross-sectional area,

respectively. The kinematic and constitutive relations for the Levin-
son beam are

�x = ∂Ux

∂x
,  �xy = ∂Ux

∂y
+ ∂Uy

∂x
,  (6)

�x = E�x, �xy = G�xy, (7)

respectively. The general polynomial solution to Eqs. (4) and (5) can
be written as

uy = c1 + c2x + c3x2 − c4
2x3

3h2(1 + �)
+ qx2

120EI
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(8)
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60EI
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(9)

Note that the constant c1 corresponds to rigid body translation in
the y-direction and c2 to a small counterclockwise rigid body rota-
tion. We calculate the load resultants (3) using the stresses (7) and
the general solution (8) and (9). Then, we can express the constants
c3 and c4 in terms of the load resultants and substitute them back
into the stresses (7) to obtain

�x = My

I
+ qy

60I
(1 + �)(20y2 − 3h2), (10)

�xy = Q

8I
(h2 − 4y2). (11)

Static bending solutions for the Levinson beam can be found in the
papers by Levinson [1], Reddy et al. [7] and Reddy [8].

Finally, as the key item of this section, let us consider the strain
energy of the beam and the external work done by the surface trac-
tions. The strain energy and the external work due to the uniform
load are

U = 1
2

∫
V

(�x�x + �xy�xy)dV, Wq =
∫ L/2

−L/2

quydx, (12)

respectively. As a novel contribution, we consider the work due to
the interior stresses on the lateral end surfaces of the interior beam
and obtain

Ws = t

∫ h/2

−h/2

�x(L/2, y)Ux(L/2, y)dy

− t
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− t
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By substituting the polynomial expressions for �x, �x, �xy, �xy, Ux

and Uy according to the general solution (8) and (9) into Eqs. (12)
and (13), we  find that

2U − Wq − Ws = 0. (14)

The above calculation shows that in static equilibrium the strain
energy of the beam is equal to one-half of the work done by the sur-
face tractions if they were to move (slowly) through their respective
displacements. This is exactly in line with the Clapeyron’s theorem
(e.g. [9,10]). We  conclude that the work done by the stresses on the
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