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a  b  s  t  r  a  c  t

The  present  paper  has been  framed  to study  the  stresses  produced  on the  rough  surface  of  a slightly
compressible,  finitely  deformed  half space  due  to a normal  moving  load.  The surface  of  the  medium  is
irregular  with  parabolic  type  of  irregularity.  The  perturbation  method  is  applied  to find  the  displacement
field.  The  normal  and  shear  stresses  have  been  obtained  in  closed  form  and  discussed  numerically  by
means  of figures.  It has  been  observed  that  the  shear  stress  developed  at different  depths  below  the  surface
depends  on  the  irregularity  depth,  frictional  coefficient  and  irregularity  factor  of  the rough  surface  of  the
medium.  Also,  surface  plots  have  been  drawn  to analyze  the  combined  variation  of  non-dimensional
stresses and  irregularity  factor  against  depth.

© 2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The incompressible and slightly compressible anisotropic mate-
rials have drawn attention recently due to interest in the effects of
large primary static deformations on dynamical material response.
Although stress is often induced in the formation of layers of mate-
rial by industrial manufacturing processes such as fabrication, but
a far greater concern within many structures is the stress arising
from external loads. Material technology now enables manufacture
of materials able to withstand large deformation and support high
external load prior to failure. In particular, it is noted that the use of
rubber-like components as vibration insulators in bridges and tall
buildings has direct relevance to modern methods of earthquake
protection [40]. The industrial application of such components is
wide spread, including engine mounts, off-shore structure, flex-
joints and vibration insulators. A particular application, which
in some extent motivated recent studies, is the increasing use
of rubber-like components (slightly compressible). It should be
emphasized that although surface waves are perhaps most readily
associated with earthquakes, they are often observed as a signifi-
cant contribution to the transient response of plates and laminates
to impulsive loads [31]. Since the nature avoids any extremes, the
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slight compressibility seems to be a more realistic assumption than
ideal incompressibility. Keeping these things in mind, the slightly
compressible medium has been considered on the present study.
Some remarkable works on this topic have been done by Dowaikh
and Ogden [23], Rogerson and Fu [32], Ogden and Sotiropoulos [29],
Rogerson and Sandiford [34], Rogerson and Murphy [33], Sandiford
and Rogerson [37], Chattopadhyay and Sahu [18], Rogerson et al.
[35], and Dhua et al. [22].

Results of theoretical and experimental studies revealed that a
real earth is considerably more complicated than the models pre-
sented earlier. Therefore, the study of moving load in elastic media
with irregular boundary [15] plays an important role for better
understanding the behavior of stresses generated due to moving
load at continental margins, mountain basins and roots, salt and
ore bodies. Because the analytical treatment of the irregularities of
the surface, in general, entails formidable mathematical difficulties,
most of the researchers concentrated their effort with consider-
able success in considering the case of slightly curved surfaces of
different geometries [16,27,38].

Deformation is the nonlinear behavior of materials, partly due to
the characteristic of the material [3]. To obtain analytical solution
to a problem involving finite deformation of elastic solid it is often
necessary to adopt a specific form for the strain-energy function.
Fundamental solutions in homogeneously deformed media were
proposed and applied into an integral formulation by Bigoni and
Capuani [4] and Brun et al. [11] for static problems and by Bigoni and
Capuani [5] for dynamic problems. The case of surface instability
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of an elastic anisotropic half space may  occur under initial stress
in finite strain [7]. Also, the surface instability cannot exist in the
absence of a free surface. Internal buckling is a type of instability
that may  occur in a homogeneous medium of infinite extent under
initial stress [6]. Some recent works considering initially stressed
media have been done by Chatterjee et al. [14,13]. The stability
analysis of the elastic half space is restricted to the case of a medium
which is isotropic for incremental plane strain [9]. In particular,
this property has been applied for rubber-type elasticity. Biot [8]
has used the stability analysis in derivation of exact analysis for the
surface instability of rubber in finite strain.

From this point of view, the mechanism of an earthquake is
represented by a shear fracture produced by the drop in stress in
the focal region. Fracture initiates at a point of the fault when the
stress acting on the fault plane exceeds a critical value, propagates
with a certain velocity, and finally stops when conditions impede
its further propagation.

The response of moving load over a surface is a subject of contin-
ued interest due to its possible practical applications in determining
the strength of a structure. The steady state solution of the prob-
lem of moving load over an elastic half space was investigated
by Cole and Huth [20]. Craggs [21] established a relatively simple
closed-form solution, exhibiting a resonance effect at a critical load
velocity, which is equal to the velocity of Rayleigh wave. The prob-
lem considered by Cole and Huth [20] was discussed previously by
Sneddon [42] by a somewhat different method. The problem of a
moving load on a plate resting on an elastic half space has been
solved by Sackman [36] and Miles [25]. The relevant systematic
approach toward problem of moving load on a plate resting on an
elastic half space has been given by Achenbach et al. [1], Chonan
[19], Ungar [43], Olsson [30], Lee and Ng [24] and Alkeseyeva [2].
Stresses developed in a transversely isotropic elastic half space due
to normal moving load over a rough surface have been determined
by Mukherjee [26]. Brock [10] has studied the rapid sliding contact
on a highly elastic pre-stressed material. Chattopadhyay and Saha
[17] have studied the dynamic response of a normal moving load
in the plane of symmetry of a monoclinic half space.

But most of the above authors have not studied the stresses
developed in an irregular slightly compressible half space due to
a moving normal load at the rough surface. Due to moving load in a
half space, stresses will be developed. If the shear stress developed
in the isotropic medium is larger than the strength of the medium,
the failure occurs. Thus, the determination of stresses developed
due to a moving load is an important task in this process.

Because of its closeness to the natural situation, the study of the
stresses developed in a medium due to a moving load has gained
great importance in mechanics. Due to a normal load moving on an
irregular surface of a slightly compressible, finitely deformed half
space, stresses will be developed. By virtue of stresses developed,
failure in the medium can be developed. This can be calculated by
knowing the strength of the medium, which is a function of strength
parameters. Thus, the determination of stresses developed due to
a moving load is an important task in this process. In the present
paper, the stresses have been obtained in closed-form and then
computed numerically for R = 0.002, 0.02 and 0.2, where R is the
frictional coefficient of the irregular rough surface of a slightly com-
pressible, finitely deformed half space. Finally, different graphs for
different parameters have been plotted and discussed.

2. The governing equations

Consider an elastic solid possessing a natural unstressed
isotropic state B0 in a configuration for which the position vector of
a representative particle is denoted by XA. An initial primary defor-
mation is imposed on the unstressed state to arrive at a finitely

deformed equilibrium configuration, denoted by Be. This particle
has position vector xi(XA). Finally, an infinitesimal time-dependent
motion is super-imposed upon the finite deformation B0 → Be with
the associated position vector of a representative particle in the
current configuration Bt denoted by x̄i(XA, t). The position vector
x̄i(XA, t) may  therefore be expressed as

x̄i(XA, t) = xi(XA) + u(XA, t) (1)

where u is the small time-dependent displacement associated
with the secondary deformation Be → Bt. The deformation gradients
associated with the deformations B0 → Bt and B0 → Be are defined
through the component relation

FiA = ∂x̄i

∂XA
, F̄iA = ∂xi

∂XA
(2)

respectively. Using Eqs. (1) and (2) it can be shown that the above
two deformation gradients are related by

FiA = (ıij + ui,j)F̄jA, (3)

with ıij the Kronecker delta, a comma  an indication of differenti-
ation with respect to the implied spatial coordinate in Be and an
overbar denoting evaluation in Be.

It will be assumed that the pre-stress arises from a pure homoge-
neous strain and therefore �F is a constant tensor field. In the absence
of body forces, the equations of motion may  be written as

(�iAF̄pA),p = �üi, �iA = ∂W

∂FiA

(4)

with �iA denoting the component of the first Piola–Kirchhoff stress
tensor, � the mass density, a superimposed dot differentiation with
respect to time and W(�F) is the strain energy function per unit
volume.

Throughout this paper, our concern is nearly incompressible
elastic materials. It can be shown for materials subject to the inter-
nal constraint of incompressibility that J = 1, where J = det F, see e.g.
[12]. This constraint is relaxed slightly to model such cases such that
J ≈ 1. Accordingly, an appropriate form of the strain energy function
may  now be obtained by introducing a Taylor series expansion of
the strain energy function around the small order parameter (J − 1),
namely

W(F, J) = W0(F, 1) +
{

�(J − 1)2

2

}
, � = ∂2

W

∂J2
. (5)

Such a form of strain function has previously employed to elu-
cidate anomalies on the slowness surface of incompressible and
nearly incompressible elastic material [39]. It is noted that there is
no linear term in the expansion of (5). This is because � ∼ O(J − 1)−1

and, therefore, nothing is gained by including a linear term [39]. In
the above expansion (5), � is the bulk modulus, which is evaluated
at J = 1. Strictly speaking, the bulk modulus is a function of the defor-
mation, however, for rubber-like materials it is found adequate to
take the bulk modulus as constant [28].

In the absence of body forces, the linearized equations governing
small-amplitude motion in an elastic material, subjected to a state
of homogeneous finite deformation, are given by

Bjilkuk,lj + �J̄uk,ki = �üi, (6)

where B is the fourth-order elasticity tensor defined in component
form as

Bjilk = J̄−1F̄jAF̄lC
∂2

W(F, 1)

∂F̄iAF̄kC

∣∣∣∣
F=F̄

. (7)

The elasticity tensor associated with a strain energy function of
the form in Eq. (4) is derivable from Eq. (3), taking the component
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