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Materials get damaged under shear deformations. Edge cracking is one of the most serious damage to the
metal rolling industry, which is caused by the shear damage process and the evolution of anisotropy. To
investigate the physics of the edge cracking process, simulations of a shear deformation for an orthotropic
plastic material are performed. To perform the simulation, this paper proposes an elasto-aniso-plastic
constitutive model that takes into account the evolution of the orthotropic axes by using a bases rotation
formula, which is based upon the slip process in the plastic deformation. It is found through the shear

g?é ‘évggzi( simulation that the void can grow in shear deformations due to the evolution of anisotropy and that stress
Anisotropy triaxiality in shear deformations of (induced) anisotropic metals can develop as high as in the uniaxial ten-

sion deformation of isotropic materials, which increases void volume. This echoes the same physics found
through a crystal plasticity based damage model that porosity evolves due to the grain-to-grain interaction.
The evolution of stress components, stress triaxiality and the direction of the orthotropic axes in shear
deformations are discussed.
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1. Introduction

Edge cracking (see Fig.1) is a serious problem in the rolling
industry where the edge cracked area is scrapped and thus is a
significant energy loss.

However, the edge cracking phenomenon is not explained by
the ductile fracture theory that the current academy and industry
possess since the physics behind it is unknown. The current duc-
tile fracture theory is based upon the growth of voids by positive
hydrostatic stress while in rolling the dominant stress state is com-
pressive, i.e., hydrostatic stress is negative. Due to this discrepancy,
edge cracking cannot be understood well by the current ductile
damage/fracture theory. Noticing the limitation of the current the-
ory, this paper aims to reveal the micro-mechanics of void growth
in shear deformations that include the boundary condition of the
edge cracked area in rolled metal slabs through shear simulations
that mimic the deformation in the edge cracked area.

Since the current ductile fracture theory, i.e., the Gurson model
[6], is based upon void growth by positive hydrostatic stress,
the variation of it cannot explain the shear ductile fracture phe-
nomenon where hydrostatic stress is near zero or negative. To
explain the shear damage process, researchers postulated that
damage is related to another stress invariant than the first and
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second ones (i.e., hydrostatic stress and the von Mises equiva-
lent stress, respectively). In this approach, the Lode parameter [14]
was utilized as an indicator of the shear damage amount since the
Lode parameter represents the amount of shear stress components.
However, the evidence that void grows proportional or related to
the Lode parameter when stress triaxiality is zero is weak.

Recent works [17,18,15] revealed many aspects of shear dam-
age. However, void growth in shear deformations when hydrostatic
stress is zero is not clearly understood. Motivated by the need for a
more physically based explanation for shear damage, recent works
by [8,11] investigated the phenomenon from a different perspec-
tive looking into the grain level mechanics. The experimental and
theoretical work by [11] indicated that nonzero hydrostatic stress
develops within grains in shear deformations; the development
and variation of hydrostatic stress in grains were experimentally
validated by a recent experimental work [2]. The theoretical and
computational work by [8] revealed in more detail the micro-
mechanics of the shear damage process, which is that porosity
evolves due to meso-scale positive hydrostatic stress develop-
ing through the grain-to-grain interaction, i.e., the interaction of
anisotropy, even when macroscopic hydrostatic stress is zero. The
source of damage in shear was further investigated by a macro-
scale continuum description using an anisotropic ductile fracture
model in [9], which showed that anisotropy of the matrix and its
evolution make the main contribution to the damage in shear.

The evolution of microstructure in metals must be taken into
account in the analysis of damage since damage occurs after a large
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Fig. 1. Edge cracked rolled slab (AA2024), showing evidence of (anisotropic ductile)
shear damage.

plastic deformation during which their microstructure changes, i.e.,
texture evolves. Taking into account the texture evolution in the
macro scale plasticity is a challenging task. [3,5,19,20] introduced
the concept of plastic spin WP to take into account the rotation of
the orthotropic axes, which occurs due to texture development.

This paper presents a finite element formulation employing an
elasto-aniso-plastic constitutive model which takes into account
the evolution of microstructure, i.e., the rotation of the orthotropic
axes. The proposed formulation is simple and can be used for any
metal forming process; the effect of induced anisotropy exists and
is critical in any metal forming process due to texture development,
i.e., even in case of initially isotropic materials. Results of the shear
simulation performed by the proposed formulation where a void
is geometrically modeled with a mesh and the deformation field
mimics that in the edge cracked area are presented, followed by
discussion and conclusion.

The following is notation used in this work. Scalars are denoted
by non bold letters without an under bar. A first order tensor, i.e., a
vector, is denoted by non bold letters with an under bar. Second and
fourth order tensors are denoted by bold letters. Tensor operations
are defined such that Ab = A;;b;, AB=A;;Bji, and A:B=A;B;;. The
subscript m indicates the average of the diagonal components of
a second order tensor as following, Am = A /3. The subscripts S and
A indicate the symmetric and anti-symmetric parts of a 2nd order
tensor. The summation convention is employed, i.e., all repeated
subscripts are summed.

2. Anisotropic ductile fracture model

In this section, a finite element formulation employing an elasto-
aniso-plastic constitutive model is proposed. To take into account
the microstructure evolution, an objective stress rate related with
the rotation of the orthotropic axes is introduced.

The additive decomposition of the symmetric part of velocity
gradient (D=(V v)s) with an objective stress rate is employed to
take into account the large deformation effect. The elastic part of
the symmetric velocity gradient is governed by the hypoelastic law
as following,

v
D°=C®"':¥ D=D°+DP (1)
where X is the Cauchy stress, C€ is the isotropic elastic tensor and

v
Y is an objective stress rate defined by:

\ .
Y=Y+Xo-0wX, o=W-WP (2)

The objective rate above is related with the evolution of the
microstructure via w. In visco-plastic crystal plasticity where the
elastic stretching part is ignored, the equation for the antisymmet-
ric part of the velocity gradient is written as following. W= w + WP,
o =RR", WP = ngzl y¥(s* @ m¥),, where Ris the rotation part in
the elastic deformation gradient, Ns is the number of slip systems,

s¥ and m® are the slip plane normal and the slip direction of the
«-th slip system, and the subscript A indicates the anti-symmetric
parts of a 2nd order tensor. Employing the kinematics in visco-
plastic crystal plasticity, additive decomposition is applied to the
skew-symmetric part of velocity gradient (W=(Vv),),

W= +WP (3)

where WP denotes the amount of the spin in the plastic slip process
and w indicates the rotation of the orthotropic bases.

The yield function for a plastically anisotropic material is
described using the Hill tensor(h) as A X) =0

f-(z):,/%)::H:z—a (4)

where H is defined by

H=J:h:J, Jzﬂ—%l@l. (5)
o is the yield stress of the material in one orthotropic direction. h is
the Hill anisotropy tensor expressed in the deviatoric stress space.
h needs to be written in terms of the rotating orthotropic bases m;
to take into account the evolution of the orthotropic bases. J is the
deviatoric projection operator. I and I are the fourth and second
order identity tensors, respectively.

The orthotropic axes (m;, i.e, m; =¢;, m, =eg and m3 =ey)
rotate governed by the spin tensor m as following.

Voo )
m =1 —om; =0, m;=wmn (6)

The microstructural evolution is represented by the rotation of
the orthotropic axes in this study. The rotation of the orthotropic
axes is explained by the non-coaxiality between the macroscopic
Cauchy stress(X) and the symmetric and plastic part of the velocity
gradient (DP) [19,5,7,4] as following

1(hy + hy + h3)

Wp:ak
3y . .
3% :H:3

(XDP - DPX) (7)

where h; (hq, hy and h3) are the diagonal elements of the Voigt
representation of Hill's anisotropy tensor in deviatoric stress space,
h and q; is a constant which describes the rate of change in the
microstructural evolution.

The material is described to obey the power-law strain-
hardening law as following

_\N
U:Us<1+;)> (8)

where ¢ is the effective stress and € is plastic strain. o is the initial
yield stress. € is defined as the cumulative plastic strain. g is a
constant strain offset. N is the hardening exponent.

The above elasto-aniso-plastic formulation based upon
microstructural evolution is implemented into the author’s
own large deformation finite element code and an ABAQUS UMAT.
An implicit time integration scheme and the consistent tangent
matrix are employed in the implementation, where the detail of
similar methods are referred to [12,13,10,16].

3. Simple shear simulation
3.1. Boundary value problem for the simple shear simulation

In this section, the boundary condition for a shear problem is
described (see Fig.2). This paper is motivated to reveal the physics
in edge cracking of rolled metal slabs, where cracking occurs only
at the boundary edge area of slabs, not at the central portion of
slabs. Based upon the observation that the traction-free boundary
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