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a  b  s  t  r  a  c  t

This  paper  is concerned  with  the  bending  problem  of  nanobeams  starting  from  a  nonlocal  thermody-
namic  approach.  A  new  coupled  nonlocal  model,  depending  on  two nonlocal  parameters,  is obtained
by  using  a  suitable  definition  of  the  free  energy.  Unlike  previous  approaches  which  directly  substitute
the  expression  of the nonlocal  stress  into  the classical  equilibrium  equations,  the  proposed  approach
provides  a methodology  to recover  nonlocal  models  starting  from  the  free  energy  function.  The coupled
model  can  then  be  specialized  to obtain  a nanobeam  formulation  based  on the  Eringen  nonlocal  elastic-
ity  theory  and  on  the  gradient  elastic  model.  The  variational  formulations  are consistently  provided  and
the differential  equations  with  the  related  boundary  conditions  are  thus  derived.  Nanocantilevers  are
solved  in  a  closed-form  and  numerical  results  are  presented  to investigate  the influence  of  the  nonlocal
parameters.

©  2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The Euler–Bernoulli beam theory dates back to the 18th century.
Such a model is based on the assumption that straight lines normal
to the midplane before deformation remain straight and normal
to the midplane after deformation. The resulting formulation for
solving the deflection of local elastic beams is based on a fourth-
order differential equation.

A nonlocal continuum model has been introduced by Eringen
(2002) to account for small-scale effects by specifying that the
stress at a given point is dependent on the stress in neighbouring
points of the body.

An alternative methodology is based on an atomistic approach
centred on the molecular dynamics and the molecular mechanics
(see e.g. Cao and Chen, 2006; Chen and Cao, 2006).

Starting from the study of Peddieson et al. (2003) which devel-
oped a nonlocal Euler–Bernoulli beam model, many contributions
on this issue have been proposed following a similar approach, that
is the nonlocal model is obtained by replacing the stress appearing
in the classical equilibrium equations by its nonlocal counterpart
(Reddy, 2007; Wang and Liew, 2007; Aydogdu, 2009; Arash and
Wang, 2012).
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An hybrid nonlocal beam model is developed in (Zhang
et al., 2010) by postulating that the strain energy functional
involves both local and nonlocal curvatures. Accordingly such
a hybrid model shows nonlocal effects for an Euler–Bernoulli
cantilever nanobeam under a transverse point load while the
Eringen model is found to be free of small-scale effects for
the same problem (Challamel and Wang, 2008). It is worth
noting that, on the basis of a simple analogy (Barretta et al.,
2014; Barretta and Marotti de Sciarra, 2014), the nonlocality
effect on nanorods and nanobeams, formulated according to the
Eringen model, can be simulated by prescribing suitable fields
of axial and curvature distortions on corresponding local rods
and beams. Hence a general procedure is available to estab-
lish if nonlocal nanorods and nanobeams are free of small-scale
effects.

In the present paper a new coupled nonlocal model is introduced
by a suitable definition of the free energy which depends on two
small length-scale parameters and on a participation factor which
can make the nanobeam flexible or stiffer. Then nonlocal thermo-
dynamics allows us to build up a consistent methodology to derive
the related variational formulation and, as a consequence, the dif-
ferential relations with the associated boundary conditions can be
obtained in a straightforward manner.

The proposed coupled model can be specialized to recover the
Eringen model (1983, 1987) and the gradient model (Aifantis, 2003;
Papargyri-Beskou et al., 2003; Giannakopoulos and Stamoulis,
2007; Akgöz and Civalek, 2012; Barretta and Marotti de Sciarra,
2013).
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An example of a nanocantilever subjected to a uniform load
is illustrated and closed-form solutions are provided in order to
investigate the influence of the nonlocal parameters. A comparison
among the coupled, Eringen and gradient model is thus performed.

2. Kinematics

An Euler–Bernoulli straight nanobeam occupying a domain V is
considered. The cross-section of the nanobeam is denoted by �,  the
centroid axis is indicated by x and the bending plane is defined by
the Cartesian axes (x, y) originating at the cross-section centroid.
The axis orthogonal to the bending plane is denoted by z and the
associated second moment of area is I =

∫
�

y2dA.
The displacement field s of the nanobeam and the kinematically

compatible deformation field D are then given by

s(x, y, z) =

⎡
⎣

−v(1)(x)y

v(x)

0

⎤
⎦ , D(x, y, z)

⎡
⎣

−v(2)(x)y 0 0

0 0 0

0 0 0

⎤
⎦ (1)

where v is the transverse displacement along the y-axis and
�:=v(2) = −ε/y is the nanobeam bending curvature, with ε axial
strain. The apex denotes the derivative along the nanobeam axis x.

3. New nonlocal elastic model

In nonlocal elasticity, the first principle of thermodynamic for
an isotropic body can be written in a global form and the second
one can be expressed in its usual local form (Eringen and Edelen,
1972; Polizzotto, 2003; Marotti de Sciarra, 2009a).

Accordingly the vanishing of the body energy dissipation can
be expressed as follows (Marotti de Sciarra, 2009b; Romano et al.,
2010; Marotti de Sciarra and Barretta, 2014)∫

V

�ε̇ dV =
∫

V

˙̌
 dV (2)

where  ̌ is the Helmholtz free energy of the nanobeam and � is the
nonlocal axial stress. The superscript dot denotes differentiation
with respect to the time.

A new nonlocal model for nanobeams is proposed in the present
paper by considering the following expression of the free energy:

ˇ(ε, ε(1)) = 1
2

Eε2 + 1
2

c2
1Eε(1)2 + 1

A
˛c2

2q�(ε) (3)

with E Young modulus, c1, c2 nonlocal scalar parameters,  ̨ par-
ticipation factor, A cross-section area and q distributed transverse
load intensity. The nondimensional scalar factor  ̨ can assume any
real value, as shown in the sequel, thus providing the weight of the
third nonlocal term in Eq. (3). From an engineering point of view,
the nanobeam becomes stiffer or not depending on the assumed
value of the parameter ˛.

Remark 3.1. The expression of the free energy (3) leads to a new
variational formulation for nonlocal Euler–Bernoulli nanobeams,
described by Eq. (5). The corresponding nonlocal model is con-
ceived as a combination between the nonlocal Eringen and gradient
models as pointed out in Remark 3.2. The term c2

2q in Eq. (3) is pecu-
liar of the model proposed by Eringen (1983). Indeed, as proved
by Barretta and Marotti de Sciarra (2014), the elastostatic prob-
lem governing a Euler–Bernoulli nonlocal nanobeam is equivalent
to the one of a corresponding local nanobeam subjected to a pre-
scribed bending curvature given by c2

2q/EI.
The time derivative of the free energy is

˙̌ (ε, ε(1)) = Eεε̇ + c2
1Eε(1)ε̇(1) + 1

A
˛c2

2q∂ε�(ε)ε̇ (4)

where ∂ε is the derivative with respect to the axial strain ε.

Table 1
Boundary conditions pertaining to the considered nanobeam model.

Kinematic boundary conditions Static boundary conditions

v −M(1) + ˛c2
2q(1) = −M(1)

0 + c2
1M(2)

1
v(1) M − ˛c2

2q = M0 − c2
1M(1)

1
v(2) 0 = c2

1M1

Substituting the time derivative of the free energy given by
Eq. (4) into Eq. (2), using the kinematically compatible deforma-
tion field (1)2 and noting that ∂ε�(ε)ε̇ = v̇(2), we get the following
variational formulation∫ L

0

M v̇(2) dx =
∫ L

0

M0v̇(2) dx + ˛c2
2

∫ L

0

q v̇(2) dx + c2
1

∫ L

0

M1v̇(3) dx

(5)

where the stress resultant moments are given by

(M, M0, M1) = −
∫

�

(�, �0, �1)ydA = −
∫

�

(�, Eε, Eε(1))ydA (6)

The expression of the free energy (3) leads thus to the new varia-
tional formulation (5) for nonlocal Euler–Bernoulli nanobeams and
the corresponding nonlocal model can be considered as a combina-
tion between the nonlocal Eringen and gradient models as pointed
out in Remark 3.2.

This new coupled model can thus be cast in the framework of the
so-called hybrid nonlocal theory proposed in Challamel and Wang
(2008), Zhang et al. (2010) where a different coupling between the
Eringen and gradient models is provided.

It is worth noting that the importance of providing a variational
formulation associated with nonlocal models relies also in the fact
that it is the starting point to formulate a nonlocal finite element
(see e.g., Marotti de Sciarra, 2013, 2014).

Differential and boundary conditions of equilibrium are recov-
ered by integrating by parts the l.h.s. of Eq. (5) and imposing
the equality with the external virtual power. In formulae we get
M(2) = q in [0, L] and T = −M(1) = F and M = M at x =

{
0, L

}
, with

T shear force and (F, M) transverse force and couple.
Integrating by parts Eq. (5), the following nonlocal differential

relation is provided

q − ˛c2
2q(2) = M(2)

0 − c2
1M(3)

1 (7)

where the corresponding boundary conditions consistently follow
from the related variational principle and are reported in Table 1.

The nonlocal elastic equilibrium equation for nanobeams associ-
ated with the considered model can then be provided by expressing
the differential equations (7) in terms of the transverse displace-
ment v using Eqs. (1) and (6). In fact, noting the equalities

(M0, M1) = −
∫

�

(Eε, Eε(1))y dA = (EIv(2), EIv(3)) (8)

being I =
∫

�
y2dA the second moment of area about the z-axis,

the governing differential equation for the bending of the nonlo-
cal Euler–Bernoulli nanobeam under distributed transverse loads
is

c2
1EIv(6) − EIv(4) = −q + ˛c2

2q(2) (9)

where the related boundary conditions can be obtained from
Table 1 and are reported in Table 2, with T = −M(1).

Hence the analysis performed above shows that the free energy
(3) yields the sixth-order differential equations (9) governing the
bending of the Euler–Bernoulli nanobeam. Accordingly six bound-
ary conditions (three for each end of the nanobeam) are required
(see Table 2) and the length-scale parameters appear in the differ-
ential equation as well as in the boundary conditions.
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