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a  b  s  t  r  a  c  t

This  paper  studies  thermoelastic  damping  in  the longitudinal  vibration  mode.  Expression  of  thermoe-
lastic  damping  is  obtained  by using  the  thermal-energy  method  and  is then  validated  by  comparing
with  the exact  solutions  deduced  from  the  coupled  thermoelasticity  equations.  It  is  demonstrated  that
Landau–Lifshitz’s  model  overestimates  thermoelastic  energy  loss  by employing  the  adiabatic  assump-
tion.  Results  of  the  present  study  indicate  that  the  peak  value  of thermoelastic  damping  for  isothermal
boundary  condition  is lower  than  that for adiabatic  boundary  condition  in the  longitudinal  vibration
mode.  Furthermore,  a comparison  was made  between  longitudinal  vibration  mode  and  flexural  vibration
mode to distinguish  their  different  characteristics.  It  manifests  that  thermoelastic  damping  of  rods  or
beams  reaches  peak  values  at the  length  scale  of  10−8 m  for longitudinal  vibration  in contrast  to  the  order
of  10−5 m  or above  for  flexural  vibration  in the numerical  examples  of the  present  study.

©  2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Thermoelastic damping, as an important intrinsic loss mecha-
nism in microelectromechanical systems (MEMS) and nanoelec-
tromechanical systems (NEMS), imposes an upper limit on the
quality factor of MEMS  or NEMS resonators. The reciprocal of the
quality factor (Q-factor), equal to the proportion of energy lost per
oscillation in the total mechanical energy in a resonator, is a mea-
sure of energy dissipation and Q-factor is a crucial parameter to
the sensing performance of MEMS/NEMS resonators based sensors.
With extensive applications of MEMS  and NEMS technology and
growing demand of high precision measurement in biological or
chemical detection, resonators with low energy dissipation or high
Q-factor are highly desirable.

Zener (1937, 1938), the first scientist proposing the concept
of thermoelastic damping, systematically studied the transverse
vibration of thin reeds based on so-called “standard anelastic solid
model” and gave the well-known approximate formula. Lifshitz
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and Roukes (2000) studied the thermoelastic damping for flex-
ural vibration of beam resonators of thin rectangular cross section
based on one-dimensional model within the context of classical
theory of thermoelasticity and they derived explicit expressions
for thermoelastic damping and frequency shift. Following Lifshitz
and Roukes’ study, a great deal of work has been devoted on this
issue for different types of resonators ranging from beam, circu-
lar plate, rectangular plate to ring, cylinder and hollow cylinder,
accounting for either one-dimensional or two-dimensional thermal
conduction. These works include, among others, Guo and Rogerson
(2003), Sun and Saka (2010), Sharma and Grover (2012), Sharma
et al. (2011), Tunvir et al. (2010), Wong et al. (2006), Kim et al.
(2010) and Prabhakar and Vengallatore (2008).

Although tremendous amount of study has been conducted on
thermoelastic damping of flexural vibration mode, little attention
was paid to the thermoelastic damping in longitudinal vibration
mode. Stachiv (2013) demonstrated that the attached mass can be
measured by detecting the fundamental flexural and longitudinal
resonant frequencies. Moreover, the highest mass sensitivity can
be achieved in longitudinally vibrating resonators. These findings
indicate the importance of longitudinal vibration mode in the mass
sensing application.

Landau and Lifshitz (1959) derived thermoelastic damping
coefficients for longitudinal vibration of rods and plates under
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adiabatic assumption, which predict that thermoelastic damping
rises with increase of the vibration frequency. Zhang and Turner
(2004) presented an approximate method for predicting thermoe-
lastic damping of rod resonators in longitudinal vibration mode.
However, the coupled governing equations and the boundary con-
ditions are not accurately satisfied in their method.

The process of thermoelastic damping of longitudinal vibrations
is similar to that of flexural vibrations in that energy is dissipated
through the irreversible flow of heat from hot regions to cold
regions. The difference is that the distance between these regions
is dictated by the transverse geometry of the resonator in flexural
vibrations while in longitudinal vibrations, hot and cold regions
are separated by nodal points in a specific vibration mode along
the axial direction of the device. In flexural vibrations, mechani-
cal energy is dissipated mainly by thermal conduction along the
thickness direction and temperature distribution in the thickness
direction can be readily derived since the elastic dilatation varies
linearly along the thickness direction. This characteristic enables
one to easily derive an explicit expression of thermoelastic damp-
ing as shown in Lifshitz and Roukes (2000). On the contrary, in
longitudinal vibration, energy is dissipated by thermal conduction
along axial direction and the temperature distribution cannot be
solved separately. For this reason, one cannot obtain an explicit
expression of thermoelastic damping for longitudinal vibration by
using the procedures of Lifshitz and Roukes (2000). Therefore, it
is worthwhile to investigate the energy dissipation in the longitu-
dinal vibration mode and explore distinct features in comparison
with flexural vibration mode.

In this study, two approaches, thermal-energy method (Hao
et al., 2009) and complex-frequency approach, are utilized for
analyzing thermoelastic damping of rod resonators operating
in longitudinal vibration mode under two boundary conditions:
clamped-isothermal, and clamped-adiabatic. Numerical results of
thermoelastic damping and frequency shift for longitudinal vibra-
tion mode are presented and compared with those of flexural
vibration mode. This study is helpful in clarifying the understanding
on thermoelastic damping in longitudinal vibrations.

2. Thermoelastic damping in the longitudinal vibration

2.1. Landau–Lifshitz’s model

Landau and Lifshitz (1959) derived expressions for energy dissi-
pation resulting from thermoelastic coupling effect by seeking the
dissipated vibration energy, which is equal to the amount of heat
flowing from hot regions to cold regions. In their derivation, the
adiabatic condition was employed and the temperature gradient
is calculated by imposing the adiabatic condition in the coupled
equation of thermal conduction. For an isotropic body, the energy
loss from vibration energy to thermal energy per cycle of vibration
is

�Q  =
∫ 2�/ω

0

∫
v

�
∇� · ∇�

T0
dv dt, (1)

where � = T − T0 is the temperature variation from the initial tem-
perature T0, ω and � denote the vibration frequency and thermal
conductivity, respectively; and v is the volume of the body. For a
longitudinally vibrating rod clamped at two ends, with x direction
along the rod axis and origin on the left end of the rod, the axial
displacement is assumed to have the following form:

ux = u0 sin kx sin ωt, (2)

where Ead and u0 are the adiabatic Young’s modulus and vibration
amplitude, respectively; k = ω/

√
Ead/�,  and � is the mass density.

Thus, the stored mechanical energy per cycle of vibration is

W = 1
4

lS�u2
0ω2, (3)

where S and l are the area of cross section and length of the rod,
respectively.

By imposing the adiabatic condition in the equation of ther-
mal  conduction in the presence of thermoelastic coupling term,
the temperature distribution for a longitudinally vibrating rod is
obtained as

� = T − T0 = −3T0˛Kad

�C
∇ · u = −T0˛Ead

�C
ku0 cos kx sin ωt, (4)

where Kad, ˛, C and u are the adiabatic bulk modulus, linear thermal
expansion coefficient, specific heat and elastic displacement vector,
respectively.

The quality factor for a micromechanical resonator is defined as

Q = 2�
W

�W
, (5)

where �W denotes the energy dissipation per cycle of vibration. For
the problem considered in this study the energy dissipation is due
to thermoelastic damping effect, thus �W in the above equation
equals to �Q  given by Eq. (1).

Substituting Eq. (4) into Eq. (1), we obtain �Q =
(��T0˛2E2

ad
/2�2C2ω)lSk4u2

0. Then, the amount of thermoelas-
tic damping expressed in terms of the inverse of the quality factor
is obtained as

Q−1 = �T0˛2ω

�C2
. (6)

2.2. Thermal-energy method

A longitudinally vibrating rod of length l is considered. We
choose the coordinate system in such a way that the origin is at the
left end of the rod and x direction is along the axis of the rod. For
this one-dimensional problem, all quantities are only dependent
on variable x. Within the context of linear theory of thermoe-
lasticity, noting strain components εx = ∂ux/∂x, εy = − 
∂ux/∂x and
εz = − 
∂ux/∂x (
 – Poisson’s ratio) in this problem, the governing
equations are⎧⎪⎨
⎪⎩

�
∂2ux

∂t2
= E

∂2ux

∂x2
− E˛

∂�

∂x

�C
∂�

∂t
+ E˛T0

∂2ux

∂x∂t
= �

∂2�

∂x2

. (7)

To examine the effect of thermoelastic coupling on the longi-
tudinal vibration, we  assume that the displacement component ux

and temperature variation �, are of time-harmonic form:{
ux(x, t) = u(x)eiωt

�(x, t) = �(x)eiωt
, (8)

where ω is the angular frequency and i the imaginary unit.
Substitution of Eq. (8) into Eq. (7) gives⎧⎪⎨

⎪⎩
−�ω2u = E

d2u

dx2
− E˛

d�

dx

i�Cω� + iE˛T0ω
du

dx
= �

d2�

dx2

. (9)

A dimensionless coupling constant
ε = [E(1 + 
)/(1 − 
)(1 − 2
)](˛2T0/�C) was introduced to repre-
sent the strength of thermoelastic coupling (Achenbach, 1984). For
common materials used in MEMS/NEMS devices such as silicon
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