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a  b  s  t  r  a  c  t

In the framework  of  the  rate-independent  large-strain  Cosserat  theory  of  plasticity  explicit  analytic  solu-
tions are  computed  in  three  space  dimensions.  It is  shown  that  the  micro-rotations  can  be  computed
by  solving  stationary  Allen–Cahn  equations.  While  the  material  parameters  are  within  a  certain  range,
this  explains  the  occurrence  of  patterning  leading  to  a partitioning  of  the  domain  into  subsets  with
approximately  constant  rotations.
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1. Introduction

This article focuses on the theoretical investigation of rotation deformation zones predicted by the large-strain rate-independent
Cosserat theory of visco-plasticity. The results extend and confirm the two-dimensional findings in Blesgen (2013). Therein, it had been
shown that for suitable boundary conditions deformation patterning arises. This term refers to the occurrence of Cosserat deformation zones,
i.e. the formation of cells in the material with approximately constant micro-rotations as a consequence of deformation. The proposed
mechanism may  explain the formation of grains and subgrains in solids. Earlier studies of this topic include the articles by Zeghadi et al.
(2005), Forest et al. (2000), Vardoulakis and Sulem (1995) and Oda and Iwashita (1999), where the plasticity of polycrystals and the kinetics
of the individual grains were investigated.

From its construction, the Cosserat model is a gradient model. In that, in contrast to other established models in elasto-plasticity as
Hill (1998), Miehe (1998) and Simo (1988, 1988), it automatically induces a length scale, with the effect that the localisation zones always
have a finite width.

This paper is organised in the following way. Section 2 recalls the formalism of the rate-independent large-strain Cosserat theory in
the case that plasticity occurs along given slip systems only. In Section 3, analytic solutions to a three-dimensional shear problem are
computed, first for a purely plastic case without elastic deformations, secondly for a purely elastic case without plasticity. In both cases,
using a parametrisation of the rotation group SO(3) by Euler angles, it is shown that the rotations can be computed by solving an Allen–Cahn
system, a model originally derived for studying phase transitions. The article ends with a discussion of the results.

2. The finite-strain Cosserat model of visco-plasticity

Let � ⊂ R
3 be a bounded domain with Lipschitz boundary serving as the reference configuration of the undeformed material. The total

deformation of the solid is controlled by the diffeomorphism ϕ : � → �t where �t ⊂ R
3 is the deformed solid at time t ≥ 0. Since ϕ(· , 0) = Id

it holds det(Dϕ(t)) > 0 for all t ≥ 0.
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List of symbols
� ⊂ R

3 reference domain, undeformed solid
�Y > 0 yield stress (3)
ϕ deformation vector of the solid,
Fe elasticity tensor (1)
Re rotation tensor (1)
Id identity tensor
Wst stretching energy (1)
�, � Lamé parameters (8)
� dislocation energy constant (4)
Lc internal length scale (9)
tr(�) trace of tensor � (10)
sym(�) symmetric part of � (8)
� single-slip parametrisation of Fp (5)
	 dislocation density (1)
Ip number of single slip systems
˛  parametrisation of Re in 3D (11)
RD Dirichlet boundary values of Re (3)
mk slip vector of k-th slip system
ck, sk acronyms for cos(˛k), sin(˛k) (12)

(x, t) space and time coordinates
h > 0 h > 0 discrete time step
F  = Dϕ deformation tensor (1)
Fp plasticity tensor (1)
Ue (right) stretching tensor (1)
Ke (right) curvature tensor (2)
Wc curvature energy (1)
�c Cosserat couple modulus (8)
�2 parameter � scaled by Lc (9)
‖· ‖ Frobenius matrix norm (10)
�t transpose of tensor �
skw(�) skew-symmetric part of � (8)
�0 values of � at time t (3),
	0 values of 	 at time t (3)
ˇ(t) shear parameter (7)
Qk matrices of Euler angles (11)
˛D Dirichlet boundary values of  ̨ (23)
nk slip normal of k-th slip system
J,  Jˇ double-well potentials (24), (32)

By the Cosserat approach, the deformation tensor F : = Dϕ is multiplicatively decomposed into the plastic part Fp and the elastic part Fe.
In turn, Fe is split into a rotation component Re and a stretching component Ue,

F = FeFp = ReUeFp. (1)

It holds Ue ∈ GL(R3) and Re ∈ SO(3), where GL is the general linear group of invertible matrices, and

SO(d) := {R ∈ GL(Rd)| det(R) = 1, RtR = Id}
denotes the special orthogonal group. In general, Ue is not symmetric and positive definite, in particular the decomposition Fe = ReUe is not
the polar decomposition. By

Ke := Rt
eDxRe = (Rt

e∂xk
Re)1≤k≤3 (2)

the third-order (right) curvature tensor is denoted, 	 = (	0, . . .,  	Ip ) designates the vector of stored dislocation densities, �Y > 0 is the yield
stress.

Starting point of the analysis is the unconstrained minimisation problem

Eˇ(Re, �) =
∫

�

⎡
⎣Wst(Rt

eD�Fp(�)−1) + Wc(Ke) + �

(
Ip∑

a=1

|�a − �0
a |
)2

+
Ip∑

a=1

|�a − �0
a |
(

�Y − 2�

Ip∑
a=1

	0
a

)⎤⎦ dx → min, Re|∂� = RD. (3)

This problem originates from Eq. (16) in Blesgen (2013) after using the identity (6) on the dislocation densities stated below, plugging
in the simple quadratic energy density of stored dislocations

V(	) := �

(
Ip∑

a=1

	a

)2

, (4)

and generalising to Ip ≥ 1 slip systems.
In (3), Eˇ represents the mechanical energy of a deformed solid. In deriving this functional, it is assumed that plastic deformations occur

only along given slip systems, controlled by a set of parameters � = (�1, . . .,  �Ip ) according to

Fp(�) = Id +
Ip∑

a=1

�ama ⊗ na. (5)

In (5), ma, na ∈ R
3 denote the slip vectors and slip normals with |ma| = |na| = 1, ma · na = 0 for all slip systems 1 ≤ a ≤ Ip.

For two sets of initial parameters 	0 = (	0
1, . . .,  	0

Ip
), �0 = (�0

1 , . . .,  �0
Ip

) of the previous time step t, the new quantities (Re, �) at time t + h

are computed as minimisers of Eˇ. Then,

	a := 	0
a − |�a − �0

a |, 1 ≤ a ≤ Ip (6)

is set and (	, �) serve as initial values of the next time step. This concept of time-discrete minimisation problems goes back to Ortiz and
Repetto (1999). It allows to apply variational methods for the investigation of deformation processes.

Starting from a material free of dislocations, 	(· , 0) = 0, as a consequence of the hardening law (6),
∑Ip

a=1	a(t + h) ≤
∑Ip

a=1	(t) ≤ 0 for
all times t. Therefore, in (3), −2�

∑Ip
a=1	0

a≥0 specifies the increase of the yield stress �Y due to stored dislocations.
In deriving (3), the deformations are restricted to the shear case

Dϕ(t) = Id +
Ip∑

a=1

ˇa(t)ma ⊗ na in � (7)



Download	English	Version:

https://daneshyari.com/en/article/800833

Download	Persian	Version:

https://daneshyari.com/article/800833

Daneshyari.com

https://daneshyari.com/en/article/800833
https://daneshyari.com/article/800833
https://daneshyari.com/

