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a  b  s  t  r  a  c  t

Reliability  of first-passage  type  for  wideband  noise-excited  viscoelastic  systems  and  the  quasi-optimal
bounded  control  strategy  for  maximizing  system  reliability  are  investigated.  The  viscoelastic  term  is
approximately  replaced  by  equivalent  damping  and  stiffness  separately.  By  using  the  stochastic  averaging
method  based  on  the  generalized  harmonic  functions,  the  averaged  Itô  stochastic  differential  equation  is
obtained  for  the  system  amplitude.  The associated  backward  Kolmogorov  equation  is  derived  and  solved
to  obtain  the  system  reliability.  By  applying  the  dynamic  programming  principle  to the  averaged  system,
the  quasi-optimal  bounded  control  is devised  by  maximizing  system  reliability.  The  application  of  the
proposed  analytical  procedures  and  the  effectiveness  of  the  control  strategy  are  illustrated  through  one
example.

© 2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

A great number of materials, such as metals and alloys at high temperature, rubbers, polymers, and composites, exhibit viscoelas-
tic behaviors. These materials are widely used in mechanical engineering, civil engineering, aerospace engineering, electric engineering,
bioengineering and other areas. Different from elastic materials, viscoelastic materials not only can store potential energy due to their elas-
ticity, but also dissipate system energy due to their damping mechanisms. Besides displaying the frequency- and temperature-dependent
characteristics, viscoelastic materials are nonlinear with respect to their motion amplitudes (Christensen, 1982; Drozdov, 1998). Conse-
quently, it is a challenge to develop constitutive models to characterize viscoelastic behaviors. Over the past decades, many models have
been developed and studied, such as Kelvin–Voigt model, fractional derivative model and so on (Roscoe, 1950; Christensen, 1982; Bagley
and Torvik, 1983; Drozdov, 1998; Zhang, 2006; Di Paola and Zingales, 2012). Among them, a simple linear viscoelastic model based on the
generalized Maxwell model has been widely adopted.

Viscoelastic systems subject to deterministic and random excitations have been widely investigated (Adhikari and Pascual, 2009, 2011;
Palmeri et al., 2004; Muscolino et al., 2005). A large amount of researches have been on the stochastic response and stability. Singh and
Abdelnaser (1993) analyzed the random vibrations of externally damped viscoelastic Timoshenko beams under general boundary condi-
tions. Muscolino et al. (2005) evaluated time-domain response of linear viscoelastic system under deterministic and random excitations by
the Laguerre polynomial approximation method. By replacing a viscoelastic force by a damping force and a stiffness force, Cai et al. (1998)
and Cai and Zhu (2011) studied the viscoelastic system under broad-band excitations with the application of the stochastic averaging
method. Ling et al. (2011) proposed a similar method and determined the stability based on the largest Lyapunov exponent method. Soize
and Poloskov (2012) studied the transient response of linear viscoelastic systems with model uncertainties and nonstationary stochastic
excitation by a time-domain formulation. Ariaratnam (1993) applied the stochastic averaging method to investigate the stability of a vis-
coelastic system with a linear stiffness and a parametric excitation. Potapov and Koirala (1997) studied the stochastic stability of elastic
and viscoelastic systems based on a method of statistical simulation of random processes and on the determination of maximum Lyapunov
exponents. Huang and Xie (2008) investigated the stochastic stability by means of the first- and second-order stochastic averaging. Floris
(2011) analyzed the stochastic stability of a hinged-hinged viscoelastic column.
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Besides the response prediction and stability analysis, reliability of viscoelastic systems is also an important and meaningful topic. It
is known that the reliability is dependent on the failure modes. Among different failure modes, the first-passage failure is a typical one. It
says that a system may  be damaged or disabled once its state leaves the safety domain for the first time. Amaniampong and Ariaratnam
(1998) studied the first-passage problem of a linear viscoelastic system subject to stationary Gaussian process, and found that the presence
of viscoelasticity increases the system reliability. Guo et al. (2002) presented a framework for performing seismic reliability analysis of
hysteretic structure-viscoelastic damper systems with and without parameter uncertainties, and concluded that the failure probabilities
of the structures significantly decreased after the installation of the viscoelastic dampers of suitable parameters. Another possible way
to reduce the system response and enhance the system reliability is to add an active control device, which is one of the topics of this
investigation. To authors’ knowledge, the design of the optimal control to maximize the reliability of viscoelastic system whose motion is
described by a stochastic integro-differential equation has not been researched.

In this paper, the method proposed by Ling et al. (2011) is applied to investigate the reliability of a viscoelastic system with a strongly
nonlinear stiffness and weakly nonlinear damping, subject to wideband noise excitations, as well as the quasi-optimal bounded control
for maximizing system reliability. The stochastic averaging method based on the generalized harmonic functions is applied to simplify
the system, and the theory of Markov processes is employed to analyze the reliability of first-passage type. Furthermore, by applying the
dynamic programming principle, the quasi-optimal bounded control is derived by maximizing the system reliability. An example is given
to illustrate the applicability of the proposed procedures and the efficacy of the control strategy.

2. Stochastic averaging of the viscoelastic system

Viscoelastic beam under random excitations is a practical research topic in structural engineering. The transverse vibration of a vis-
coelastic beam is governed by a stochastic partial differential equation. Through Galerkin procedure, the fundamental mode of the vibration
is governed by the following single-degree-of-freedom equation,

Ẍ + εc(X, Ẋ)Ẋ + g(X) + εKZ = ε1/2fk(X, Ẋ)�k(t) (1)

where X and Ẋ are the generalized displacement and velocity, respectively; c(X, Ẋ), g(X) and Z are related to the damping force, stiffness force
and the viscoelastic force, respectively; ε is a small positive parameter; K is a constant proportional to the fundamental natural frequency
of the linear counterpart; ε1/2fk(X, Ẋ)�k(t) (k = 1, 2, . . .,  m) represent weak external and/or parametric wideband noise excitations; and the
Einstein notation is adopted. In Eq. (1), the viscoelastic term Z is described by the generalized Maxwell model (Roscoe, 1950; Christensen,
1982; Drozdov, 1998; Zhang, 2006)

Z =
∫ t

0

h(t − �)X(�)d� (2)

In the model, function h(t) is called the relaxation function assumed to be

h(t) = Ġ(t), G(t) =
m∑

i=1

Eie
−t/�i (3)

where m is the number of Maxwell units in a parallel chain, Ei is the general elastic modulus, and �i is the relaxation time.
To proceed further from Eqs. (1)–(3), we use the result developed in Ling et al. (2011), in which the viscoelastic force can be approximately

replaced by a damping force and a stiffness force. Then, the viscoelastic system (1) is approximately equivalent to the following system
without viscoelasticity,

Ẍ + εc1(X, Ẋ)Ẋ + g1(X) = ε1/2fk(X, Ẋ)�k(t) (4)

where

c1(X, Ẋ) = c(X, Ẋ) + K

m∑
i=1

Ei�i

1 + (�iω̄)2

g1(X) = g(X) − εK

m∑
i=1

EiX

1 + (�iω̄)2

(5)

in which ω̄ is the average frequency depending on the vibration amplitude of the corresponding Hamiltonian system. The expression of
ω̄ depends on the specific system, see Ling et al. (2011) and the example herein. The additional stiffness and damping terms in Eq. (5),
depending on the viscoelastic parameters Ei and �i, describe effects of the viscoelastic behavior.

Next, the stochastic averaging method is applied to study system (4). Introducing the following transformation (Zhu et al., 2001),

X(t) = A cos �(t) + B, Ẋ(t) = −A�(A, �)  sin �(t), �(t) = ˚(t) + 	 (t) (6)

where the instantaneous frequency is

�(A, �)  = d˚

dt
=

√
2[U(A + B) − U(A cos � + B)]

A2 sin2 �
= b0(A) +

∞∑
i=1

bi(A) cos i� (7)



Download English Version:

https://daneshyari.com/en/article/800835

Download Persian Version:

https://daneshyari.com/article/800835

Daneshyari.com

https://daneshyari.com/en/article/800835
https://daneshyari.com/article/800835
https://daneshyari.com

