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a  b  s  t  r  a  c  t

A  generalization  of  the  stability  results  of  the  induction  magnetic  field  in  a simple  one  space  dimensional
model  for  a  protoplanetary  disc, given  in Rüdiger  and  Shalybkov  (2004)  and  Straughan  (2013),  is proposed.

The  model  studied  in  Rüdiger  and  Shalybkov  (2004)  and  Straughan  (2013)  arises  from  the  induction
equation  for  the  magnetic  field  in the  presence  of  a  sheared  one-component  velocity  flow with Hall  and
ion-slip  effects.  Because  of  applications  in some  geophysical  problems,  here  we consider  a  more  general
two-component  velocity  field  that generalizes  the  case  studied  in Straughan  (2013)  and  also  includes
elliptic  (in  particular  uniform  circular  motions  a =  −  b)  and  hyperbolic  orbits.

We  study  linear  instability  and  nonlinear  stability  of the  induction  magnetic  field  by  means  of  the
classical  spectral  and  energy  methods.

Published  by  Elsevier  Ltd.

1. Introduction

The longstanding problem of rapid outward transport of angu-
lar momentum mechanism and consequential inward gas spiraling
in an accretion disc, had a widely accepted explanation by Balbus
and Hawley (1991) which clarified how a local powerful shear-
ing instability, mediated by a weak magnetic field and an outward
decreasing angular velocity, should be relevant to understand the
origin of the so-called “turbulent viscosity”. This instability, known
as magnetorotational instability (MRI), requires differentially rotat-
ing flows which are ultimately shear flows.

The initial formulation of MRI  was for a fully ionized, ideal mag-
netohydrodynamic medium in which the field and fluid are well
coupled to each other. But often non-ideal magnetohydrodynamic
effects such as Ohm, Hall and ion-slip effects play an important
role. So, in a weakly ionized protoplanetary disk where the elec-
trical conductivity might be too low, the Hall effect can amplify
or suppress the MRI. In Rüdiger and Shalybkov (2004), the action
of the Hall effect has been considered in a simple 1-D kinematic
protoplanetary disc model, referred to a Cartesian frame (x, y, z),
where the gas is supposed in motion with velocity U = (0, u0x, 0). The
effect was found to be destabilizing when the shear and Hall num-
bers had opposite signs and unstable perturbations existed, for the
same shear number C� connected to u0, for very small as well as for
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very high values of the Hall number but only if C� exceeded a mini-
mum value. Recently, Straughan (2013) resumed the 1-D kinematic
model of Rüdiger and Shalybkov (2004). He studied the induction
magnetic Eq. (1) including also the ion-slip effect and using the
same velocity field considered in Rüdiger and Shalybkov (2004).
By means of classical variational energy method he found a global
exponential stability condition which gives a sharp threshold in
correspondence to the minimum value of C�.

Because of some applications to geophysical and astronomical
problems (see, for instance, Ponsar et al. (2003) and Hasan et al.
(2008)), here we generalize the problem handled in Straughan
(2013), by introducing two-components velocity fields. Precisely,
we admit that the gas velocity depends not only on the x-variable
through the shear coefficient u0, but also on the y-variable through
an other coefficient: U = (ay, bx,  0). This includes, as special physi-
cal cases, the elliptic, circular and hyperbolic motions. Hence we
study instability with the standard spectral method and energy
nonlinear stability with the Lyapunov second method. Of course,
the stability condition we  obtain depends on both the parame-
ters a and b of the velocity field. In particular, we find the main
result that the most destabilizing case is obtained for the hyper-
bolic motions (whenever a and b are of the same sign), while
the most stabilizing motions are the rotations (b = − a), as we
expected.

The analysis we  perform here is very simple: we  use the classical
spectral method for studying linear instability and the L2 energy for
nonlinear stability.

The plan of the paper is the following: in Section 2, we  recall the
main equations; in Section 3 we  study linear instability. Section
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4 is devoted to nonlinear energy stability. The paper ends with a
conclusion, in Section 5.

2. Magnetic induction equation

The induction magnetic equation reads:

∂Bi

∂t
= [curl(u × B)]i + ��Bi − ˇ[curl(curlB × B)]i

+ ˇ2
{

curl[B × (B × curlB)]
}

i
(1)

where i = 1, 2, 3, u is an imposed known velocity field, � is the
magnetic diffusivity,  ̌ is the Hall coefficient and ˇ2 is the ion-slip
coefficient, Cowling (1976).

We shall investigate the stability of the basic solution of (1) B =
(0, 0, B0), with B0 /= 0.

Here we assume a more general velocity profile, which includes,
as a special physical case (b = − a), the uniform rotation:

u = (ay, bx, 0),

where a and b are two real, nonvanishing, parameters.
In order to study the stability/instability of B, we  search for a

perturbation solution of form

B = (B0u(z, t), B0v(z, t), B0).

So we obtain the nonlinear system

u,t =
(

1 + CI

4

)
u,zz + Ĉ�v + CH

4
v,zz

+CI

4

[
2u(u,z)2 + vu,zv,z + u(v,z)2 + u2u,zz + uvv,zz

]
,

v,t = C�u +
(

1 + CI

4

)
v,zz − CH

4
u,zz

+CI

4

[
2v(v,z)2 + uu,zv,z + v(u,z)2 + v2v,zz + uvu,zz

]
,

(2)

where

CH = ˇB0

�
, C� = bH2

�
, Ĉ� = aH2

�
, CI = B2

0ˇ2

�
.

To system (2) we append the boundary conditions

u = 0, v = 0 on z = 0, 1. (3)

The solutions are, for any t > 0, elements of an Hilbert space
equipped with scalar product, and norm || · ||. Denoting U = (u, v)T ,
Eqs. (2) in operator form read

U,t = LU + N(U) where N(0) = 0.

L and N are the linear and nonlinear operator respectively, with L
given by:

L =

⎛
⎜⎜⎝

(
1 + CI

4

) ∂2

∂z2
Ĉ� + CH

4
∂2

∂z2

C� − CH

4
∂2

∂z2

(
1 + CI

4

) ∂2

∂z2

⎞
⎟⎟⎠ .

We  decompose the operator L into two parts Straughan (2004)

L = L1 + L2 =

⎛
⎜⎜⎝

(
1 + CI

4

) ∂2

∂z2

Ĉ� + C�

2

Ĉ� + C�

2

(
1 + CI

4

) ∂2

∂z2

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝

0
Ĉ� − C�

2
+ CH

4
∂2

∂z2

C� − Ĉ�

2
− CH

4
∂2

∂z2
0

⎞
⎟⎟⎠ .

The first, L1, is symmetric, the other one, L2, is skew-symmetric.
Let us define:

� = Ĉ� − C�

2
, � = Ĉ� + C�

2
.

We  soon see that the term

Ĉ� − C�

2
+ CH

4
∂2

∂z2

is stabilizing (because it is a skew-symmetric term), moreover also
the ion-slip effect is stabilizing.

As stability parameter we  choose

�2 = (Ĉ� + C�)
2

4

(see Galdi and Straughan (1985) and Mulone and Rionero (2003) for
the stability parameter choice in the case of the rotating or magnetic
Bénard problem.) We note that in the special physical case of the
uniform rotation, we have � = 0 and the basic magnetic field is stable
(see below).

3. Linear instability

In order to study linear instability, we consider the system

u,t =
(

1 + CI

4

)
u,zz + Ĉ�v + CH

4
v,zz

v,t = C�u +
(

1 + CI

4

)
v,zz − CH

4
u,zz .

(4)

System (4) is linear and autonomous. Because of the boundary
conditions, as usual, we look for solutions of the form

u = Ue−�nt sin n	z, v = Ve−�nt sin n	z V, U ∈ R,

where �n is a priori a complex number. Then, �n has to satisfy the
equation

(
�n − 1 + CI

4
n2	2

)2

−
(

� − � + CH

4
n2	2

)  (
� + � − CH

4
n2	2

)
= 0. (5)

In the particular case � = 0, we have(
�n − 1 + CI

4
n2	2

)2

+
(

� − CH

4
n2	2

)2

= 0. (6)

The last equation immediately implies the following Theorem:

Theorem 3.1. By assuming that u is a uniform rotation vector, i.e.
u = (ay, − ax,  0),  then the basic magnetic field B = (0,  0, B0) is linearly
stable, i.e., re(�n) > 0 for any n = 1, 2, . . .
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