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a  b  s  t  r  a  c  t

A  striking  difference  between  the  conventional  local  and  nonlocal  dynamical  systems  is  that  the  later
possess  finite  asymptotic  frequencies.  The  asymptotic  frequencies  of four  kinds  of  nonlocal  viscoelastic
damped  structures  are  derived,  including  an  Euler–Bernoulli  beam  with  rotary  inertia,  a Timoshenko
beam,  a Kirchhoff  plate  with  rotary  inertia  and  a Mindlin  plate.  For  these  undamped  and  damped  non-
local  beam  and  plate  models,  the  analytical  expressions  for the  asymptotic  frequencies,  also  called  the
maximum  or  escape  frequencies,  are  obtained.  For  the  damped  nonlocal  beams  or plates,  the  asymptotic
critical  damping  factors  are  also  obtained.  These  quantities  are  independent  of the  boundary  conditions
and  hence  simply  supported  boundary  conditions  are  used.  Taking  a carbon  nanotube  as  a  numerical
example  and  using  the Euler–Bernoulli  beam  model,  the  natural  frequencies  of  the  carbon  nanotubes
with  typical  boundary  conditions  are  computed  and  the asymptotic  characteristics  of  natural  frequencies
are  shown.

© 2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Structures at the nano-scale dimension are subject to damping from external forces, such as magnetic forces (Lee and Lin, 2010),
interaction with the substrate, humidity and thermal effects (Chen et al., 2011), and fluid damping (Bhiladvala and Wang, 2004). The
Akhiezer damping phenomenon is found in nanostructures such as a nano-mechanical resonator with a nearly uniform strain field (Kunal
and Aluru, 2011). The general characteristics of the damping may  be elastic or viscoelastic and these characteristics play a vital role in the
dynamic analysis of structures. At the nano-scale, the understanding of damping characteristics, for example in atomic force microscopes
(AFM), is required to generate superior image quality at high scan rates. Further, damping at the nano-scale is important for vibration
based nano-sensors (Adhikari and Chowdhury, 2012) for the accurate measurement of the frequency shift. Damping mechanisms are
usually complex and often approximated as proportional damping in engineering applications, with the damping parameters found from
experiment. Calleja et al. (2012) stated that accurate quantification of the damping is vital to understand the sensitivity of nano-scale mass
sensors. Hence, the investigation of the dynamic response of damped beams and plates at the nano-scale is essential.

The development of nano-technology yields an increasing number of nano-scale devices, including nano-electro-mechanical systems
(NEMS) and micro-electro-mechanical systems (MEMS). Basic structural elements such as beams and plates at the nano-scale are utilized
as nano-structure components for NEMS and MEMS.  Widely used nano-rods and nano-beams include carbon and boron nitride nano-
tubes, while popular nano-plates (i.e. two-dimensional structures) are graphene sheets and gold nano-plates. Two key computational
methodologies available for the dynamic analysis of these nano-structures comprise molecular dynamic (MD) simulation and continuum
mechanics based approaches. Both of these methods have drawbacks. Some realistic experiments are available, although controlling every
parameter at the nano-scale is difficult. Continuum mechanics is gaining popularity, although the size and scale effects are important at
the nano-scale, and cannot be ignored. Among the size-dependent mechanics methods, the nonlocal continuum model (Eringen, 1983)
has received significant interest in recent years. By employing the nonlocal elasticity approach, length-scale effects may  be included in
a simple, but physically understandable, way in nano-structures. The nonlocal continuum theory has been compared with molecular
dynamics simulations, and excellent agreement has been obtained (Ansari and Sahmani, 2012; Ansari et al., 2010; Murmu  and Adhikari,
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2011). Nonlocal Euler–Bernoulli and Timoshenko beam models have been used for bending, vibration and buckling analysis of nano-
structures (Ansari and Ramezannezhad, 2011; Benzair et al., 2008; Heireche et al., 2008; Li et al., 2011; Murmu  and Adhikari, 2010; Murmu
and Pradhan, 2009; Reddy, 2007; Reddy and Pang, 2008; Simsek, 2011; Thai, 2012; Yang et al., 2011, 2012). Lu et al. (2007) proposed
nonlocal elastic plate theories. Nonlocal beam and plate models are widely used for carbon nano-tubes and graphene (Arash and Wang,
2012).

In this communication we consider viscoelastic damped nonlocal structures. The effect of viscoelastic damping on the vibration response
has been investigated by several researchers. Lopez and Fernandez (2012) considered nonlocal viscoelastic damping patches in the bend-
ing vibrations of Euler–Bernoulli beams. The dynamics of Euler–Bernoulli beams and Kirchhoff plates with nonlocal damping, including
time and hysteresis effects has been investigated (Friswell et al., 2007; Lei et al., 2006). Using the finite element method developed for
nonlocal viscoelastic beam models, Friswell et al. (2007) studied the dynamics of beams with different boundary conditions. Although
these investigations highlighted the role of viscoelasticity for macro-scale models, their applicability to the nano-scale remains an open
question.

The appearance of asymptotic frequencies for nanostructures, using nonlocal mechanics, have been reported, including wave prop-
agation in carbon nano-tubes via nonlocal continuum mechanics models (Wang, 2005). The derivation of asymptotic phase velocities
and frequencies were presented. The asymptotic frequency is important as the scale coefficient or nonlocal parameter could be obtained
from its known or measured value. Wang and Varadan (2007) performed similar work with nonlocal shell theory and estimated the scale
coefficient based on the derived asymptotic frequency. Escape frequencies or asymptotic frequencies were also proposed for embedded
graphene sheets (Narendar and Gopalakrishnan, 2012). The relationships between the asymptotic frequencies and the nonlocal scaling
parameter were established.

The literature survey clearly shows that most studies investigating asymptotic frequencies on scale-dependent beams and plates con-
sidered undamped structures, and work on damped structures is very limited. For nonlocal elastic solids, asymptotic frequencies exist,
in contrast to local elastic solids. In this communication, the asymptotic frequencies and asymptotic critical damping factors are derived
and presented for four kinds of nonlocal viscoelastic damped structures. These structural elements include Euler–Bernoulli beams with
rotary inertia, Timoshenko beams, Kirchhoff plates with rotary inertia, and Mindlin plates. Kirchhoff plate theory is a thin plate theory
that ignores the effect of transverse shear deformation. Mindlin plate theory is a first-order shear-deformable plate theory, where the
transverse shear deformation is significant in thick plates and shear-deformable plates. These structures may  be applied to the nano-scale,
including nonlocal effects. The asymptotic frequencies form an upper bound for the natural frequencies of these structures. The higher
frequency mode shapes are not significantly affected by the boundary conditions of the structures; that is the asymptotic frequencies are
equal for all boundary conditions for a given beam or plate theory. Hence simply supported boundary conditions are used to calculate
the asymptotic frequencies (also called the maximum or escape frequencies) for the undamped and damped nonlocal beams and plates,
as analytical solutions are most easily obtained for these boundary conditions. For the damped nonlocal beams or plates, the asymptotic
critical damping factors are also obtained. A carbon nano-tube is taken as a numerical example, and using the Timoshenko beam model,
the natural frequencies of the carbon nano-tubes with typical boundary conditions are computed, and the asymptotic characteristics of
the natural frequencies are highlighted.

2. Equations of motion for damped nonlocal beams and plates

Lu et al. (2007) gave a brief review of nonlocal elasticity theory, and basic nonlocal beam and plate theories are reported in the literature
(for example, Arash and Wang, 2012). According to nonlocal elasticity theory, the stress tensor at a point r is given by

� =
∫

V

K(|r′ − r|, �)�m(r′)dr′ (1)

where K is the nonlocal modulus, |r′ − r| is the Euclidean distance and �m is the local macroscopic stress. The term � is the material constant
that depends on the internal and external lengths. Eq. (1) is in integral partial form and the resulting integro-partial differential equation
is difficult to solve. For certain choices of the kernel function, this equation may  be transformed into an easier differential form (Eringen,
1983; Reddy, 2007), for example

(1 − �2�2∇2)� = �m, � = e0a

�
(2)

where e0 is a material constant, a and � denote the internal and external characteristic lengths, respectively.
Incorporating the nonlocal effects (Eringen, 1983), external damping, initial pre-stress and the Kelvin-Voigt viscoelastic model (or

internal damping) into nano-beam and nano-plate models, the governing equations for the vibration analysis of different systems are
obtained. The details of the derivation for beams is discussed in an earlier paper by the present authors (Lei et al., 2013a). Using Eq. (2) we
list the equation of motion for four systems discussed in this communication.

2.1. Nonlocal viscoelastic Euler–Bernoulli beam with rotary inertia

Consider an Euler–Bernoulli beam with deflection w,  at position x along the beam. Then we  have the following equations:(
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where E,I,�,A are Young’s modulus, second moment of area, density and cross-sectional area of the beam. N0 is the axial pre-stress. t denotes
the time and �d is the viscoelastic time constant. C1 is the displacement–velocity–dependent viscous damping coefficient. The term e0a is
the nonlocal parameter where a is the external characteristic length such as crack length, wavelength or sample length. The dynamics of
a damped viscoelastic nonlocal Euler–Bernoulli beam was described by Lei et al. (2013b).
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