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a  b  s  t  r  a  c  t

The  present  paper  is  concerned  with  analysis  of  the response  of a nonlinear  parametric  amplifier  in a
broad  range  of  system  parameters,  particularly  beyond  resonance.  Such  analysis  is of  particular  interest
for micro-  and  nanosystems,  since  many  small-scale  parametric  amplifiers  exhibit  a distinctly  nonlinear
behavior  when  amplitude  of their  response  is sufficiently  large.  The  modified  method  of  direct  separa-
tion  of  motions  is  employed  to study  the  considered  system.  As  the  result  it is  obtained  that  steady-state
amplitude  of  the nonlinear  parametric  amplifier  response  can  reach  large  values  in  the  case of  arbitrarily
small  amplitude  of external  excitation,  so  that  the  amplifier  gain  tends  to infinity.  Very  large  amplifier
gain  can  be  achieved  in  a broad  range  of system  parameters,  in  particular  when  the  amplitude  of  para-
metric  excitation  is  comparatively  small.  The  obtained  results  clearly  demonstrate  that  very  meaningful
parametric  amplification  can be realized  in resonant  systems  driven  within  a nonlinear  response  regime,
and  that  nonlinear  parametric  amplifier  possesses  certain  advantages  over  linear  one.

©  2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Parametric amplifiers based on resonant micro- and nanosys-
tems appeared to be an efficient tool for low-noise, low-distortion
signal amplification, and recently have received significant atten-
tion in applied physics and engineering research communities
(Rugar and Grutter, 1991; Dana et al., 1998; Krylov et al., 2010;
Karabalin et al., 2010). Conventional parametric amplifiers are
linear systems under action of combined external and paramet-
ric excitation. Dynamics of such systems is thoroughly studied
(see, e.g. (Yakubovich and Starzhinskii, 1975)). However, many
small-scale parametric amplifiers based on micro- and nanosys-
tems exhibit a distinctly nonlinear behavior when amplitude of
their response is sufficiently large (Postma et al., 2005; Lifshitz
and Cross, 2008). So, it becomes necessary to realize such systems
dynamics in a nonlinear context. The Duffing-type nonlinearity
can be considered as the simplest model. For example, in paper
(Rhoads and Shaw, 2010) the near-resonant response of such
system was studied for small values of parametric excitation ampli-
tude and nonlinearity coefficient. In the present paper this system
is considered in a broader range of parameters. We  abandon the
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requirement for the natural frequency of the corresponding lin-
earized system to be close to the external excitation frequency, and
do not consider the parametric excitation amplitude and the non-
linearity coefficient as necessarily small. So, the following equation
is studied:

z′′ + �z′ + ız + �z cos 2t0 + kz3 = A cos(t0 + �) (1)

Here z represents the amplifier response, � is the coefficient of dis-
sipation, which is assumed to be linear, A and � the amplitudes of
the external and parametric excitations correspondingly, � the rel-
ative phase term, ı the squared natural frequency of the linearized
system, and t0 the dimensionless time.

For studying Eq. (1) we  employ the modified method of
direct separation of motions (MDSM) (Sorokin, 2014). The con-
ventional MDSM is a method which facilitates solution of various
problems involving action of high-frequency vibrations on non-
linear mechanical systems (see, e.g. (Blekhman, 2000, 2004)).
The modified MDSM is adapted for analysis of linear and non-
linear differential equations without explicit small parameter. A
general comparison of this method with other approaches, par-
ticularly Ritz’s method of harmonic balance (Chelomey, 1979;
Magnus, 1965), Van der Pol’s method of slowly varying ampli-
tudes (Magnus, 1965; Nayfeh, 2000; Krylov and Bogoliubov, 1947),
Krylov–Bogoliubov–Mitropolsky methods (Nayfeh, 2000; Krylov
and Bogoliubov, 1947; Bogoliubov and Mitropolskii, 1961; Sanders
and Verhulst, 1985; Nayfeh and Mook, 1979; Nayfeh, 2005), and the
multiple scales method (Nayfeh, 2000; Nayfeh and Mook, 1979;
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Nayfeh, 2005), is given in paper (Sorokin, 2014). In particular, it
is noted that the modified MDSM may  be interpreted as a certain
continuation of the averaging methods.

Widely used approaches for analysis of systems with periodic
coefficients are based on Floquet theory (Brillouin, 1953). However,
application these approaches for strongly nonlinear problems is
rather problematic.

2. Solution by the modified method of direct separation of
motions

Employing the modified MDSM for solving Eq. (1), we  search
solution in the form:

z = ˛(T1) +  (T1, T0) (2)

Where new timescales T1 and T0 are defined as T0 = t0, T1 = εT0;
ε � 1 is an artificial small parameter,  ̨ is “slow”, and   is “fast”,
2�-periodic in dimensionless time T0 variable, with average zero:〈
 (T1, T0)

〉
= 0

Here 〈...〉 designates averaging in the period 2� on time T0, i.e. for

function h(T1,T0) we have
〈
h(T1, T0)

〉
= 1/2�

∫ 2�
0
h(T1, T0)dT0.

The method may  be interpreted in the following way: It is appli-
cable for solving equations without small parameter; however,
there is a fee one has to pay for this. The fee lies in the imposi-
tion of a certain restriction on the sought solutions: only solutions
which are close to periodic may  be determined by the means of
the method (so, we assume that the considered equation has peri-
odic solutions, which we also detect by the MDSM). The restriction
expresses itself in the introduction of the artificial small parameter
ε, which defines the proximity of the sought solution to a periodic
one. When this parameter tends to zero, we get pure periodic in
time t0 solution.

Similarly to the multiple scales method (Nayfeh, 2000; Nayfeh
and Mook, 1979), the modified MDSM implies variables T1 and
T0 to be considered independent, so that d2/dt20 = ∂2/∂T2

0 +
2ε(∂2/∂T1∂T0) + ε2(∂2/∂T2

1 ). Inserting (2) and timescales T1 and T0
into (1) and averaging this equation on time T0 with the conditions
for   being taken into account, we obtain the following equation
of “slow” motion (for variable ˛)

ε2 d
2˛

dT2
1

+ ε�
d˛

dT1
+ ı  ̨ + �〈  cos 2T0〉

+ k(˛3 + 3˛〈 2〉 + 〈 3〉) = 0, (3)

Equation of “fast” motions (for variable  ) can be obtained by sub-
tracting Eq. (3) from Eq. (1)

∂2 

∂T2
0

+ 2ε
∂2 

∂T1∂T0
+ ε2 ∂

2 

∂T2
1

+ �

(
∂ 

∂T0
+ ε

∂ 

∂T1

)

+ k( 3 + 3˛ 2 + 3˛2  − 3˛〈 2〉 − 〈 3〉) + ı 

= −�((  ̨ +  )  cos 2T0 − 〈  cos 2T0〉) + A cos(T0 + �) (4)

Taking into account that  (T1, T0) is a time T0 periodic function,
solution of the fast motions Eq. (4) is sought in the form of series

  = B1(T1) cos(T0 + �1(T1)) + B2(T1) cos(2T0 + �2(T1)) + . . . (5)

Influence of the second and the third harmonics (and all higher
harmonics) on the system response for ı = O(1) and � = O(1) turns
out to be negligibly weak when either the nonlinearity coefficient
k or the external excitation amplitude A is small: k � 1 or A � 1.
In particular, no super- or sub-harmonic resonances can occur. So,
in this range of parameters only the first harmonic can be taken
into account to predict the system response. Accounting of other
harmonics is not difficult, but leads only to a minor quantitative

change of the results. For amplitude B1 and phase �1 the following
equations are obtained:

ε2 d
2B1

dT2
1

+ ε�
dB1

dT1
− B1

(
1 + ε

d�1

dT1

)2

+ ıB1 + 3
4
kB3

1 + 3k˛2B1

= −1
2
�B1 cos 2�1 + A cos(�1 − �) (6)

ε2B1
d2�1

dT2
1

+
(
�B1 + 2ε

dB1

dT1

)(
1 + ε

d�1

dT1

)

= 1
2
�B1 sin 2�1 − A sin(�1 − �), (7)

The stable steady-state response of the amplifier is of primary inter-
est. So the following system of equations is composed to describe
it:

ı  ̨ + k

(
˛3 + 3˛

B2
1

2

)
= 0, (8)

−B1 + ıB1 + 3
4
kB3

1 + 3k˛2B1 = −1
2
�B1 cos 2�1 + A cos(�1 − �) (9)

�B1 = 1
2
�B1 sin 2�1 − A sin(�1 − �), (10)

In the present paper we consider relations ı > 0, k > 0 as fulfilled,
so Eq. (8) has single real solution  ̨ = 0. From the derived equation
of slow motion (3) it follows that this solution is always stable.

3. Negligible small amplitude of external excitation

First, examine the case of negligible small amplitude of external
excitation A ∼ ε2. Taking into account that  ̨ = 0, from Eqs. (9) and
(10) obtain the following expressions for amplitude B1:

B1 = 0, B1 =

√√√√ 4
3k

(
±
√

1
4
�2 − �2 + (1 − ı)

)
(11)

So, when relations � > 2� ,
√

1/4�2 − �2 + 1 − ı > 0
hold true, stable oscillations with amplitude B1 =√

4/(3k)(
√

1/4�2 − �2 + (1 − ı)) can arise in the considered

system even for arbitrarily small value of the external excitation
amplitude A. Stability of these oscillations follows from Eqs. (6)
and (7). As an illustration, the dependencies of the steady-state
amplitude B1 of the nonlinear parametric amplifier response on
parameter ı are shown in Fig. 1. Solid lines correspond to stable
branches, and dashed lines to unstable branches.

From expressions (11) and Fig. 1 it follows, in particular, that
large amplifier response can be obtained when the parametric
excitation amplitude � is comparatively small: � ∼ ε. For example,
when relations � ∼ ε, � > 2� , ı /≈ 1 and k ∼ ε hold true, expression
for B1 takes the form:

B1 =
√

4
3k

(1 − ı), (12)

and when ı < 1, we get B1∼ε−1/2. As an illustration, the amplifier
response is shown in Fig. 2 for � = 0.1, k = 0.001, � = 0.02, A = 0.00001
and (a) ı = 0.96, ż(0) = 0, z(0) = 0, (b) ı = 0.5, ż(0) = 0, z(0) = 27.
Nonzero initial conditions are imposed in case (b) in order to get
in basin of attraction of the required regime of steady-state oscil-
lations with large amplitude (two stable regimes coexist at these
values of the parameters, see Fig. 1). Here solid lines correspond to
the numerical solution of the initial equation (Wolfram Mathemat-
ica, NDSolve), and dashed lines designate value of the amplitude of
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