
Mechanics Research Communications 62 (2014) 123–131

Contents lists available at ScienceDirect

Mechanics  Research  Communications

journa l h om epa ge: www.elsev ier .com/ locate /mechrescom

Vibration  properties  of  piezoelectric  square  lattice  structures

Zhi-Jing  Wua,  Feng-Ming  Lia,b,c,∗,  Chuanzeng  Zhangc

a School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
b College of Mechanical Engineering, Beijing University of Technology, Beijing 100124, China
c Department of Civil Engineering, University of Siegen, D-57068 Siegen, Germany

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 28 December 2013
Received in revised form 11 August 2014
Accepted 11 September 2014
Available online 28 September 2014

Keywords:
Lattice structures
Piezoelectric beams
Band-gap properties
Defect states
Spectral element method

a  b  s  t  r  a  c  t

This  work  is devoted  to  study  the dynamic  problems  of  periodic  piezoelectric  structures  by using  the
spectral  element  method  (SEM).  The  dynamic  stiffness  matrix  of the  piezoelectric  square  lattice  is  for-
mulated by  this  method.  Highly  accurate  frequency-domain  solutions  of  the  lattices  with  and  without
piezoelectric  beams  are  obtained.  Band  gap properties  of  the piezoelectric  square  lattices  are  investi-
gated  and  the  influences  of  the  different  contents  of  piezoceramic  layers  are analyzed.  The  behaviors  of
the  waveguide  due  to  material  defects  are  demonstrated.  Lattice  structures  with  different  central  and
peripheral  parts  are  designed  and  their  unique  dynamic  characteristics  are  also  analyzed.
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1. Introduction

Elastic wave propagation in periodic media leads to special
dynamic properties, such as vibration band-gaps. Due to the band-
gap characteristics, periodic structures are considered as functional
materials or structures and have received much experimental and
theoretical attention in recent years (Golub et al., 2012; EI-Naggar
et al., 2012; He et al., 2013; Tee et al., 2010). For some frequency
ranges, the vibration propagation in such periodic structures is for-
bidden. These frequency ranges are called stop-bands or band-gaps
(Leamy, 2012; Gazalet et al., 2013). The elastic waves in some other
frequency ranges can propagate in the structure and the frequency
ranges are called pass-bands. Periodic structures have potential
applications such as in frequency filtering, noise suppression, vibra-
tion isolation, and design of novel transducer and acoustic devices.

In recent years, with the increasing attention on the investi-
gation of elastic wave propagation in periodic structures, several
methods have been developed to analyze the band-gap character-
istics. Wang et al. (2010) analyzed the stop-band characteristics
of elastic waves in piezoelectric phononic crystals by the plane
wave expansion method. Li et al. (2013) calculated the elastic wave
band-gaps of two dimensional (2D) phononic crystals composed
of square or triangular lattices of solid cylinders in a solid matrix
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by the boundary element method. Besides, lump mass method
(Wang et al., 2005), multiple scattering theory (Sainidou et al.,
2008), finite difference time-domain method (Sun and Wu,  2007)
and finite element method (FEM) (Liu and Gao, 2007) were also
applied to study the periodic structures. Recently, the spectral ele-
ment method (SEM) was  used to study the band-gap properties due
to its unique advantages (Wu  et al., 2013a,b).

The SEM is based on the Fourier-transform analysis. For a geo-
metrically and materially uniform structure, it can be considered to
be only one spectral element (Doyle, 1997; Lee, 2009). Thus, the ele-
ment number can be reduced largely. Moreover, the SEM provides
exact solutions because the element interpolation functions are
based on the eigenfunctions of the structural equation of motion.
Instead of the simple polynomials in the finite element method,
the spectral element applies the frequency-dependent interpola-
tion functions. Due to these advantages, there are growing interests
in the SEM applied to various structures (Wu  et al., 2013a,b; Żak,
2009; Banerjee et al., 2008).

Piezoelectric beams are often utilized as energy harvesters or
wafer piezoelectric transducers. Piezoelectric materials have also
received considerable attention due to their wide range applica-
tions in the active control of engineering materials and structures.
Erturk and Inman (2011) adopted the lumped parameter model, the
Rayleigh–Ritz method and the distributed parameter model to ana-
lyze energy harvesting by means of the piezoelectric beam. Wang
(2012) studied the bimorph piezoelectric beam harvester based
on the Timoshenko and Euler–Bernoulli beam theories. Lee et al.
(2013) studied a laminated composite beam with a piezoelectric
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layer and discussed the effect of piezoelectric layer on the disper-
sion relation of both symmetrically and asymmetrically laminated
composite beam. They also revealed that the piezoelectric layer
reduced the group velocities of all the wave modes. Jang et al.
(2014) investigated a smart beam with surface-bonded piezoelec-
tric transducers and analyzed the effect of structural damping on
the propagation of shear waves. As far as we know, studies on vibra-
tion band-gap properties of lattices with piezoelectric beams have
not been reported yet in literature.

In this paper, the SEM is further developed and applied to
investigate the dynamic properties of piezoelectric square lattice
structures. Based on the Timoshenko beam theory, the dynamic
stiffness matrices of the beam element with and without piezocera-
mic  layers are deduced. The spectral equation of the whole lattice
structure is established. After the validation of the proposed SEM,
the band-gap and defect-state characteristics are presented and
analyzed. Some interesting findings are reported and discussed.

2. Problem description

In this section, the 2D square lattice in the global coordinate sys-
tem (xg–yg) as shown in Fig. 1(a) is considered. It contains 15 × 15
repeating unit cells and the corresponding unit cell is displayed in
Fig. 1(b). The unit cell is made of two materials. The black part is
material M1 and the gray part is material M2. The lengths of the two
materials are l1 and l2, respectively.

The in-plane (xg–yg plane) vibrations are studied. There are alto-
gether three degrees of freedom (DOFs) per node. The unit cell
is considered as four beams which contain bending and tension
components. For the case of small elastic deflection, the uncoupled
superposition of bending and tension vibrations can be carried out.

The spectral stiffness matrices of an elastic beam element and a
piezoelectric beam element are deduced by the SEM in Sections 3.1
and 3.2. For the conventional pure elastic beam, it is homogeneous,
isotropic, elastic and has a uniform thickness. For the piezoceramic
beam, its deformation is assumed to be small and it exhibits linear
piezoelectric material behaviors.

In the SEM, the dynamic stiffness matrix of each beam is firstly
deduced in its local coordinate system (x–y). Then the dynamic
stiffness matrix can be transformed from the local coordinate sys-
tem into the global one by the transformation matrix. Finally,
the dynamic stiffness matrix of the whole structural system can
be assembled. In this method, treating the elements separately
makes it possible to analyze the structure consisting of an arbitrary
number of elements, and the transformation from local to global
coordinates allows the beams to be connected at any orientations.

3. Spectral element method

3.1. Elastic beam element

The free vibration of the Timoshenko beam is described by
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where u(x, t) and v(x, t) is the longitudinal and transverse displace-
ments, �(x, t) is the rotation, � is the mass density, E is the Young’s
modulus, G = E/[2(1 + �)] is the shear modulus with � being the Pois-
son’s ratio, I is the area moment of inertia about the bending axis,

Table 1
Correspondence of matrix elements.

S Sv Su

(1,1) (1,4) (1,1) (1,2)
(2,2)  (2,3) (1,1) (1,2)
(2,5) (2,6) (1,3) (1,4)
(3,2) (3,3) (2,1) (2,2)
(3,5) (3,6) (2,3) (2,4)
(4,1) (4,4) (2,1) (2,2)
(5,2)  (5,3) (3,1) (3,2)
(5,5) (5,6) (3,3) (3,4)
(6,2) (6,3) (4,1) (4,2)
(6,5) (6,6) (4,3) (4,4)

and � is the shear correction factor depending on the shape of the
cross section (Timoshenko and Gere, 1972).

The general solutions to Eqs. (1)–(3) can be given by the spectral
representation (Doyle, 1997)

u(x, t) = U(x, ω)eiωt, (4)

v(x, t) = V(x, ω)eiωt, (5)

�(x, t) = �(x, ω)eiωt, (6)

where U(x, ω), V(x, ω) and �(x, ω) are the spectral displacements
of u, v and �.

Substituting Eqs. (4)–(6) into Eqs. (1)–(3), one can obtain the
governing differential equations in the frequency-domain. Base on
these equations and definitions of the nodal displacements and
forces, the relations between the spectral nodal displacements and
forces can be written as (Doyle, 1997; Lee, 2009)

F = Sd, (7)

where F = [ F1
x F1

y M1
y F2

x F2
y M2

y ]
T

and d =
[ U1 V1 �1 U2 V2 �2 ]T are the nodal force and dis-
placement vectors as shown in Fig. 2, and S is the complete
dynamic stiffness matrix witch is composed of Su and Sv (Doyle,
1997; Lee, 2009). The relation between these three dynamic
stiffness matrices is shown in Table 1. The terms of S which are not
shown in the table are equal to 0.

3.2. Piezoelectric beam element

The piezoelectric beam as shown in Fig. 3 is considered now.
The piezoceramic layers are perfectly bonded on the base beam.
The length and width of the piezoelectric beam are L and b, and
the thicknesses of the base beam and piezoceramic layers are hb
and hp, respectively. The top and bottom piezoceramic layers are
poled in the opposite thickness directions (Erturk and Inman, 2011;
Wang, 2012). The series connection of the electrical circuit is shown
in Fig. 3(c). As shown in Section 3.1, the dynamic stiffness matrix
of the tension component is uncoupled with that of the bending
component. In this subsection, pure bending motion is the main
objective to be discussed.

The piezoelectric beam element is considered to be a Timo-
shenko beam. So the constitutive equations of the piezoelectric
layers can be given in matrix form as⎧⎪⎨
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where εp and 
p are the normal and shear strains, �p and �p are
the normal and shear stresses, D3 is the electric displacement, E3 is
the electrical field intensity in the piezoceramic layer across the
thickness, SE

11 and SE
55 are the elastic compliance constants, d31

is the piezoelectric constant, and εT
33 is the permittivity constant.
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