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a  b  s  t  r  a  c  t

A  main  characteristic  of  rock  masses  is  the  presence  of  natural  fractures  (or  joints)  at  different  scales.
The  effective  mechanical  behavior  of  a rock  medium  is  strongly  affected  by  that  of the joints,  which
can  be  viewed  as  cracks  able  to transfer  stresses.  The  purpose  of  the  present  paper  is to  formulate  the
macroscopic  poroelastic  behavior  for a rock  with  fluid-saturated  joint  network.  The  joints  are  modeled
as  interfaces  whose  behavior  is  described  by means  of  generalized  poroelastic  state  equations.  Particular
emphasis  is  given  to the situation  of small  extension  joints  for  which  micromechanics-based  expressions
of  the  poroelastic  properties  are  derived.  Finally,  the  accuracy  of the micromechanical  predictions  is
assessed by  comparison  with  2D  finite  element  solutions  based  on the cohesive  model.

©  2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

It is well-known from observations made at different scales
that rock masses generally exhibit discontinuity surfaces of var-
ious sizes and orientations, commonly referred to as joints. Since
joints represent surfaces of weakness along which sliding can occur
and preferential channels for fluid flow, their presence is a fun-
damental weak component for stability and safety of many rock
engineering structures, such as dam foundations, underground cav-
erns, oil wells or toxic waste storage facilities. A comprehensive
modeling of a rock mass behavior should thus incorporate a reli-
able description of the hydromechanical coupling that governs the
joint deformation.

Strength, deformation and permeability coupling of rock joints
have been widely investigated during the previous decades, leading
to numerous experimental works and models. Among the pioneer-
ing works, one may  quote the contributions due to Goodman (1976)
and Bandis et al. (1983). Representative works include references
(Barton et al., 1985; Plesha, 1987; Saeb and Amadei, 1992; Ng and
Small, 1997; Nguyen and Selvadurai, 1998; Lee et al., 2001; Olsson
and Barton, 2001; Indraratna and Ranjith, 2001; Boulon et al., 2002;
Bart et al., 2004; Lui et al., 2009), to cite a few.

However, most of the hydromechanical models have focused on
the connection between the joint aperture due to applied stresses
and the permeability. The effect of fluid pressure on joint deforma-
tion have been either neglected or not properly accounted for. Few
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models have addressed the fully hydromechanical coupling in rock
joints (Ng and Small, 1997; Bart et al., 2004; Maghous et al., 2013).

Conceived as a potential alternative to the discrete methods
in which the individual joints and the rock matrix are handled
separately, the homogenization approach adopts a continuum
formulation for the constitutive behavior of the jointed rock
material, which is regarded as a homogenized medium. In this
context, a recent paper by Maghous et al. (2013) proposed a gen-
eral micromechanics-based approach to poroelastic behavior of a
jointed rock. These authors addressed the particular case of a rock
matrix cut by a network of parallel short joints. The main purpose
of the present contribution is to extend the previous formulation to
the situation of a rock medium containing randomly oriented joints.
Emphasis shall be given to derive closed-form expressions for the
tensor of homogenized drained moduli, as well as for the effective
Biot tensor and modulus. A primary objective of the analysis is to
highlight the effect of fluid pressure in the interstitial space of rock
short joints on the overall poroelastic properties of the rock mass.
Adopting a simplified two-dimensional setting, the accuracy of the
micromechanical predictions is assessed by comparison with finite
element solutions based on the cohesive model (Needleman, 1987;
Xu and Needlman, 1996). It should be emphasized that, unlike the
classical model of cracks in which no stresses are transferred across
the cracks, the joints are in fact fractures that are able to transfer
normal as well as tangential stresses.

2. Micromechanics

Let  ̋ denote the representative elementary volume (REV) of a
homogeneous rock matrix cut by a discrete distribution of short
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Fig. 1. REV of a jointed rock and loading conditions.

joints ω = ∪
i
ωi (Fig. 1). Adjective ‘short’ refers to joints with small

extension when compared to the size of the REV. It is noted that
short joints are in fact microfractures (or microcracks) that are able
to transfer stresses. It is also noted that the concept of REV implies
the scale separation between its characteristic length and those of
joints, namely the size of short joints.

The rock matrix fills the domain ˝\ω, where symbol \ stands
for the set difference. Note that strains and stresses within the rock
medium are defined on the rock matrix domain ˝\ω only, and not
on the whole REV. Throughout the paper, symbol 〈·〉 denotes the
volume average over the rock matrix:

〈·〉 = 1∣∣˝∣∣
∫

˝\ω

.dV (1)

At the scale of the REV (microscopic scale), each joint is modeled
as an interface ωi, whose orientation is defined by a normal unit
vector ni (see Fig. 1).

2.1. Hill’s lemma for the jointed medium

The loading applied to the REV is defined by homogeneous strain
type boundary conditions on the boundary ∂˝:

�
-
(x-) = ∈ · x- ∀x- ∈ ∂  ̋ (2)

where ∈ represents the macroscopic strain and x- is the position
vector. Hill’s lemma  reads in the situation of a jointed medium (e.g.,
Maghous et al., 2008)

〈�〉 : ∈ = 〈� : ε〉 + 1∣∣˝∣∣
∫

ω

T- ·  [�
-
]dS (3)

for any statically admissible stress field � and any kinematically
admissible displacement field �

-
. Tensor ε represents the linearized

strain associated with displacement �
-

and [�
-
] is the displacement

jump at the joint interface. In the above equation, T- is the stress
vector acting upon the joint.

The strain average rule relating the macroscopic strains to the
local strains writes

∈ = 〈ε〉 + 1∣∣˝∣∣
∫

ω

[�
-
]

s⊗n-dS (4)

where n- = n- i along ωi and symbol
s⊗ stands for the symmetric part

of dyadic product:
(

u-
s⊗v-

)
ij

= (uivj + viuj)/2. Identity (4) physically

means that the macroscopic strain ∈ is the sum of two contrib-
utions, namely that of the rock matrix strains and that of the
displacement jump along the joints.

2.2. Formulation of the poroelastic state equations

We consider the situation where the connected joint network
is saturated by a fluid at pressure p, which is assumed to be uni-
form in the REV. The rock matrix is assumed to be linearly elastic
with fourth-order stiffness tensor C

s: � = C
s : ε in ˝\ω. A poroe-

lastic formulation is adopted for the behavior of the joints in order
to account for the effect of the fluid pressure on the relationship
between the stress vector acting on the joint and the correspond-
ing relative displacement. The poroelastic state equations for the
joints are written in the following form (Bart et al., 2004; Maghous
et al., 2013){

T- = � · n- = k · [�
-
] + T-

p

ϕ = p

m
+ ˛[�

-
] · n-

along ω = ∪
i
ωi (with n- = n- i along ωi)

(5)

where

k = ki,  ̨ = ˛i, m = mi, Tp = −˛ipn- i along ωi (6)

ki is the stiffness of joint ωi, relating the stress vector to the
displacement jump in drained conditions p = 0. Scalar ˛i has the
significance of a Biot coefficient for the joint ωi modeled as a gen-
eralized porous medium. This means that the displacement jump
[�
-
], which represents the joint deformation, is controlled by the

effective stress vector T- + ˛pn-.  The second state equation in (5)
relates the joint pore change per unit joint surface ϕ to the fluid
pressure p and the joint displacement jump [�

-
]. Scalar mi repre-

sents the Biot modulus for joint ωi. Physical interpretation as well

Fig. 2. Decomposition of problem (P) into two elementary problems (P1) and (P2).
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