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This paper deals with instability of a semi-infinite strip of polarizable layered material
which is subjected to both a boundary displacement and an externally applied electrostatic
potential in a plane deformation setting. Since the material is polarizable, it contributes
(here in a linear fashion) to the applied electrostatic field. The nonlinear equilibrium prob-
lem is solved through a perturbative scheme and the Euler-Lagrange equations are pre-
sented. Closed-form solutions are found for some special situations and they are checked
against some established results. It is shown that the general condition which lends the
instability threshold is obtained enforcing that a third degree polynomial admits a double
negative real solution. This amounts to seeking the roots of the discriminant of the polyno-
mial and to checking two conditions. The negative double root yields the perturbation fre-
quency. In the general case, a numerical solution is called upon and an instability curve, in
terms of electrostatic potential vs. boundary displacement at threshold, is found. At reach-
ing such curve, the material suddenly superposes to a homogeneously stretched configura-
tion a periodic undulation in both the displacement and the electrostatic fields. A
parametric analysis is put forward and an interesting non-monotonic behavior is found.
The frequency as well as the amplitude of both the mechanical and the electrostatic undu-
lations are found and discussed.
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1. Introduction

Layered materials embody a wide class of different ac-
tual materials ranging from thin magnetic films to lipid
vesicles, plastic sheets and liquid crystals. All these materi-
als share the common feature that, in a suitable range of
behavior, their mechanics may be effectively described
through a dilatative strain energy across and a bending en-
ergy along the layers. In particular, a large amount of liter-
ature is devoted to studying smectics-A liquid crystals as
layered materials endowed with a unit vector microstruc-
ture which is related to their optical property (Prost and de
Gennes, 1993). It is found that a liquid crystal sample,
when subjected to an external perturbation, reaches a
threshold deformation beyond which it abruptly changes
its optical properties (Meyer and Clark, 1973). This phe-
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nomenon, which possesses experimental relevance, is
called the Helfrich-Hurault effect (Prost and de Gennes,
1993, Section 7.1.6). The source of perturbation which trig-
gers instability may be either mechanical, for instance in
the form of a boundary displacement (Ribotta and Durand,
1977; Meyer and Clark, 1973), or electrostatic, through a
potential difference between the conducting plates of a
capacitor (Helfrich, 1970; Singer, 1993; Napoli and Bevilac-
qua, 2005), or magnetic, through an externally applied
magnetic field (Hurault, 1973; Stewart, 1998), or even
thermo-optical, by means of light absorption (Prost and
de Gennes, 1993, Section 7.1.8).

So far, the treatment of instability in layered materials
is largely confined to the linear theory of deformation
and it parallels the pioneering work of Prost and de Gennes
(1993). In Mahadevan and Cerda (2003), a much wider per-
spective is adopted and, moving from thin elastic polyeth-
ylene sheets, a general theory of wrinkling is put forward
by means of the mechanics of finite deformations in
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layered materials. As pointed out in Brochard-Wyart and
de Gennes (2003), such behavior is met in many every
day situations and materials, ranging from an old apple
skin to human skin and, possibly, geological formations.
Following this viewpoint, in Napoli and Nobili (2009) the
classical problem of strain induced instability in layered
materials is investigated under the theory of finite defor-
mation. It is found that the classical results for the thresh-
old boundary displacement and the undulation amplitude
are limiting values of more general expressions, valid inas-
much as the ratio of the material constants (coherence
length) is small compared to the sample thickness.

In this paper, instability of a semi-infinite cell of polariz-
able layered material in a plane deformation layout is stud-
ied. The material is confined between the conducting plates
of a capacitor and instability arises under the combined ef-
fect of both mechanical boundary displacement and electro-
static potential. Finite deformations are considered, such
that the resulting equilibrium problem is nonlinear and
the superposition principle no longer holds. Nonetheless,
as in Mahadevan and Cerda (2003) and Napoli and Nobili
(2009), a perturbative approach is pursued so that the equi-
librium configuration is thought of as being the superposi-
tion of a small mechanical perturbation onto a finitely and
homogeneously stretched configuration. Likewise, since
the medium is polarizable, the total electrostatic field is gi-
ven by a linear bias generated by the conducting plates
(whose distance depends on the boundary displacement)
plus a small perturbation field. Instability occurs when
either of the perturbations exists in the form of a periodic
function. Results may be useful in designing electro-optic
devices employing soft layered materials or in measuring
the model's constitutive parameters by inverse analysis
(Bahadur, 1992). It is remarked that, as required by the gen-
eral theory of wrinkling (Mahadevan and Cerda, 2003), kine-
matical nonlinearity is accounted for. In this respect, the
boundary displacement is finite and generally not negligible
withrespect to the initial thickness, so that, as pointed out in
Napoli and Nobili (2009), it affects the successive applica-
tion of the perturbations. It is further remarked that other
forms of instability are equally possible other than that con-
sidered herein. Such is the case of, for instance, anisotropic
or fiber reinforced materials (Prikazchikov et al., 2008),
kink-band instability (Peletier et al., 2004; Wadee and Edm-
unds, 2005), wherein loading acts along, other than across,
the layers, and the case of chevron (or zigzag) instability,
which applies to layered materials as well, yet beyond the
Helfrich-Hurault threshold (Singer, 1993).

The paper is organized as follows. Section 2 introduces
the kinematics of layered materials. Section 3 leads to
the free energy expression for polarizable layered materi-
als. The perturbative approach is introduced in Section 4,
where the Euler-Lagrange equations for the linearized
problem are obtained. Their specialized forms in the cases
of no electrostatic potential, no mechanical displacement
and isotropic polarization allow closed-form solutions,
which may be checked against the established results. Sec-
tion 5 brings the general solution to the problem through a
cubic equation which lends instability inasmuch as it pos-
sesses a double and a single real root. The common fre-
quency of the perturbations is given by the location of

the double root. The amplitude of the perturbations is ob-
tained at Section 6. A numerical solution is given in Sec-
tion 7 along with a parametric analysis. Plots of the
instability curve, of the frequency relative variation with
respect to the classical result and of the dimensionless
amplitudes for both the mechanical and the electrostatic
perturbations are given. In particular, the amplitudes de-
pend whether the controlling parameter of the problem
is the mechanical displacement or the electrostatic poten-
tial. Finally, conclusions are drawn in Section 8.

2. Kinematics

A layered material may be regarded as a stack of inter-
acting sheets, each endowed with a rigidity in its plane
much higher than the stiffness across. As a result, the kine-
matics of layered materials may be described through the
deformation of iso-surfaces o, whose description is in
the form (Weinan, 1997; Capriz, 1997; Napoli, 2006)

w(r,k) =0. (1)

Accordingly, a point lies on the kth layer if its position vec-
tor r fulfills Eq. (1). In the natural state, layers are plane
and equispaced. In a continuum mechanics approach, the
cardinality of k is so large that it is actually replaced by a
dense range of values. Furthermore, the deformation is
introduced as the one-to-one orientation preserving map-
ping x such that

r = (ro), (2)

where r is the position vector, in the actual configuration,
of a material particle whose position is ry in the natural
state. The deformation gradient is thus defined

F = Grady, (3)

and j = detF > 0. Layered materials are endowed with a
vectorial microstructure given by the unit vector n normal
to the layers. In this form, microstructure is entrained by
the local motion and it is often referred to as being latent,
for its behavior is already described by the local kinematics.
Recalling the property of the gradient of a iso-surface, it is

. gradw 7 ()
grad o||

where ‘grad’ is the spatial gradient and should not be con-
fused with the material gradient ‘Grad’. Here, microstruc-
ture serves as a mean of specifying the polarization
direction of the molecules making up the layers. Polariza-
tion along n is referred to as parallel, polarization across
as orthogonal.

A plane deformation framework is considered and the
deformation plane is spanned by the orthogonal system
of unit vectors {i,k}, directed along the x- and z-axis,
respectively. The material under consideration, in its natu-
ral state, occupies the plane region comprised between the
bounds z=0and z =d, i.e.

Do ={(x,2) € R*:0<z<d}. (5)
and the homogeneous field of unit vectors normal to the

layers is taken along the z-axis, i.e. np = k. Then, Eq. (4)
may be rewritten in terms of deformation gradient
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