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1. Introduction

In this work we extend the dynamic relaxation method, applied
to the study of wrinkling in isotropic membranes in Haseganu and
Steigmann (1994), to the analysis of partly wrinkled anisotropic
membranes. The considered model is based on tension-field the-
ory (Pipkin, 1994), which is derived from conventional membrane
theory via quasiconvexification of the associated strain-energy
function (Dacarogna, 1982), yielding the minimum strain energy
that can be attributed to a given state of strain. The relaxed
strain-energy function automatically excludes the destabilizing
compressive stresses predicted by the original, unrelaxed, energy. It
is derived by constructing an energy-minimizing sequence of defor-
mations characterized by ever-more finely spaced wrinkles and
effectively encodes the average energy density of a membrane con-
taining many wrinkles. The same model emerges rigorously from
three-dimensional nonlinear elasticity via the method of gamma
convergence (Le Dret and Raoult, 1995), a technique for extracting
the leading-order variational problem in the small-thickness limit.

Whereas the expression for the potential energy in tension-field
theory has been rigorously justified, the question of the existence
of energy minimizers remains open. This is due to the failure of
the relaxed strain-energy function to satisfy coercivity conditions
underlying the hypotheses of available existence theorems based
on the direct method of the calculus of variations (Dacarogna,
1982). This circumstance stems from the fact that the absence of
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stress in connected regions of strain space – a feature of the relaxed
energy – implies an absence of stiffness also. This situation fur-
nishes impetus for methods such as that adopted here, in which
the equilibrium problem is embedded in an artificial dynamical
system constructed in such a way  that the desired equilibria are
globally asymptotically stable with respect to arbitrary initial data.
Indeed, such an approach may  prove fruitful in devising construc-
tive existence theorems; however, this issue is beyond our present
scope.

We discretize the surrogate dynamical system using a finite-
difference method based on Green’s theorem, and forward
integrate in (artificial) time using a simple difference scheme. Tem-
poral accuracy is not an issue, as it is only the asymptotic states
that are of interest. This allows for the use of simple explicit finite
difference operators to achieve an efficient vectorized system for
computations.

The basic theory and associated numerical analysis are well
developed, and discussed in detail in the references cited. For this
reason we  forego their detailed description, emphasizing instead
their application to anisotropic bio-elastic or artificial structural
membranes. The strain-energy function adopted is inspired by the
observed response of bio-tissues, in which an initially soft in-plane
tensile response is followed by strain-stiffening as the underly-
ing collagen fibers straighten and stretch on the micro-scale to
accommodate an overall finite deformation. A similar mechanism
characterizes woven PVC-clad polyester structural fabric used in
tension structures, in which the interlaced fibers of the weave
are initially crimped and hence relatively soft in response to in-
plane tension, stiffening as the fibers straighten in the transition
to a stretching mode (Nadler et al., 2006). Alternative analyses of
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wrinkling in anisotropic membranes are discussed in Woo  et al.
(2004), Barsotti and Vannucci (2013) for the case of small strains.
In the present work we model finite strains, using Pipkin’s algo-
rithm (Pipkin, 1994) to construct relaxed membrane theory. This
is applicable if the underlying (unrelaxed) energy is a convex func-
tion of strain – a condition that is usually satisfied in applications.
An interesting alternative treatment is described in Epstein (1999).

2. Membrane theory

We  have provided a brief resumé of the theoretical background
in a companion paper (Atai and Steigmann, 2012). This is summa-
rized here for the benefit of the reader. The equilibrium equation for
membranes has a simple divergence structure identical to that for
conventional bulk continua. We  use a plane � as reference configu-
ration, taken here to be unstressed. Let e˛;  ̨ = 1, 2, be orthonormal
vectors spanning (the translation space of) �,  and let e3 = e1 × e2 .
We use the usual summation convention with Greek indices taking
values in {1, 2} and Latin indices in {1, 2, 3}, while Greek sub-
scripts preceded by commas are used to denote partial derivatives
with respect to initial Cartesian coordinates x˛ . The equilibrium
equation in the absence of lateral loads is

divT = 0, or Ti˛,˛ = 0, (1)

where

T = Ti˛ei ⊗ e˛ (2)

is the Piola stress (resultant) and div is the two-dimensional
divergence operator on � . In the case of elasticity the stress is
determined by the deformation gradient

F = Fi˛ei ⊗ e˛, where Fi˛ = ri,˛ ≡ ∂ri

∂x˛
(3)

in which ri are the Cartesian coordinates of a material point after
deformation. The relationship is (Haseganu and Steigmann, 1994)

T = WF, or Ti˛ = ∂W

∂Fi˛

, (4)

where W is the strain energy per unit area of � .
These equations are augmented by traction data ti = Ti˛�˛ or

position data ri = Ri on complementary parts of the boundary, where
�˛ are the components of the exterior unit normal to an edge in the
reference configuration.

For the mixed zero-load/position boundary-value problems
considered here, equilibria furnish energy minimizers only of their
gradients F satisfy the Legendre-Hadamard condition

a ⊗ b · M(F)[a ⊗ b]≥0, (5)

pointwise in �,  for all non-zero three-vectors a and two-vectors b
∈�, where

M(F) = WFF (6)

is the tensor of elastic moduli. We  shall also make use of the strain-
dependent elastic moduli C(E), where

E = 1
2

(FtF − 1); E˛ˇ = 1
2

(Fi˛Fiˇ − ı˛ˇ) (7)

is the strain in which 1 is the identity for 2-space, and

C(E) = UEE (8)

are the plane-stress elastic moduli, in which

U(E) = W(F) (9)

is the associated strain-energy function.

An application of the chain rule furnishes the useful connection

M(F)[A] = AS + 1
2

FC(E)[AtF + FtA] (10)

for any tensor A of the form A = Ai˛ei ⊗ e˛, where

S = UE (11)

is the symmetric (plane) second Piola-Kirchhoff stress
(S = S˛ˇe˛ ⊗ eˇ), related to the Piola stress by

T = FS;  Ti˛ = FiˇSˇ˛. (12)

We observe, using the minor symmetries of C,  that

A · M(F)[A] = AtA · S + AtF · C(E)[AtF]. (13)

In terms of components,

Mi˛jˇAi˛Ajˇ = Ai˛AiˇSˇ˛ + C˛ˇ��Ai˛FiˇAj�Fj�. (14)

The strain-energy function W is locally convex (as a function
of F) if and only if A · M(F)[A]≥0 for all A. Similarly, the strain-
energy function U is locally convex (as a function of E) if and only if
B · C(E)[B]≥0 for all B. It follows that if U is convex in E and the stress
is positive semi-definite, then W is convex. This can be seen imme-
diately by using the spectral representation S =

∑2
˛=1S˛u˛ ⊗ u˛,

where S˛ are the principal stresses and u˛ are the associated prin-
cipal directions; thus, if the principal stresses are non-negative,
then

AtA · S =
2∑

˛=1

S˛

∣∣Au˛

∣∣2≥0 (15)

for all non-zero A. In the present context this observation is due to
Pipkin (1993).

In fact it is well known (Haseganu and Steigmann, 1994) in
membrane theory that positive semi-definiteness of the 2nd Piola-
Kirchhoff stress is a necessary condition for the Legendre-Hadamard
inequality and hence necessary for the energy to be minimized.
This observation is the basis of tension-field theory, in which the
membrane strain-energy function is relaxed so as to ensure that a
negative-definite or indefinite stress never arises in any configura-
tion (Pipkin, 1994).

3. Solution procedure

We  use a discrete version of the Green-Stokes theorem to dis-
cretize the equations directly on the computational plane �.  This
method, incorporating position and traction boundary conditions,
is described comprehensively by Haseganu and Steigmann (1994),
to which reference may  be made for a detailed discussion. The
associated nodal points are distributed at the intersections of a
curvilinear grid of boundary-fitted coordinates computed using the
grid-mapping procedure discussed in (Wang and Steigmann, 1997)
and so again we  omit the details.

This scheme is used to discretize the artificial dynamical system

divT = �r̈ + cṙ, (16)

obtained by appending an explicit viscous damping term to the
inertial term in the actual equations of motion. In turn, the
spatially discretized system is used together with an explicit
central-difference time integration scheme designed for efficient
vectorization of the equations. This is not the actual equation of
motion. It is an artificial system introduced solely to expedite the
computation of equilibria.
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