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a  b  s  t  r  a  c  t

In this  article,  a new  explicit  formula  is  presented  for the  length-dependent  persistence  length  of micro-
tubules  with  consideration  of surface  effects.  Further,  surface  effects  on  the  buckling  characteristics  of
microtubule  systems  in  viscoelastic  surrounding  cytoplasm  are  investigated  using  a  modified  Timoshenko
beam  model.  Closed-form  solutions  are  presented  for  the  buckling  growth  rates  of  double-microtubule
systems.  Both  normal  and  shearing  behaviors  of microtubule  associated  proteins  are  taken  into  consid-
eration.  The  comparison  of  present  results  with  the  available  experimental  data  in the  open  literature
shows  that  the present  formulation  provides  more  accurate  results  than  those  obtained  by  the  classical
beam  theory.  It  is  observed  that  the  surface  effect  plays  a prominent  role in  the  bending  and  buckling
behaviors  of  microtubules.  Further,  surface  effects  are  more  significant  at higher  buckling  modes.

© 2014  Elsevier  Ltd.  All rights  reserved.

1. Introduction

Eukaryotic cytoskeleton plays an important role in the mechan-
ical behavior of cells with complex structures. The cytoskeleton is
a self-organized network consists of three main types of protein
filaments, namely, microtubules, intermediate filaments and actin
filaments. The stiffest elements of cytoskeleton are microtubules
(MTs) which are commonly organized by the centrosome. The
flexural rigidities of intermediate and actin filaments are much
smaller than that of microtubule (about 100 times smaller) (Gittes
et al., 1993). MTs  are long, hollow cylinders having outer and inner
radii of about 12.5 and 7.5 nm,  respectively. In cells, the length of
MTs  ranges from 1 to 10 �m,  while in axons MT’s lengths may  vary
from 50 to 100 �m (Bray, 2001). MTs  are made of �- and �-tubulin
protein heterodimers that bind head-to-tail in protofilaments.
Tubulins are organized in thirteen parallel protofilaments to
form a single microtubule. MTs  have crucial roles in many cellular
processes (Alberts et al., 1994), such as forming the mitotic spindle,
directing and facilitating intracellular motions of organelles, and
support kinesins to convert chemical energy into mechanical work.
It is also reported that MTs  can be used as targets for anticancer
drugs (Jordan and Wilson, 2004). Due to these roles in various
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cellular functions, the investigation of mechanical properties of
MTs  is an important problem.

Recently, continuum based modeling of MTs  has been widely
used in order to study their mechanical behaviors. One main reason
for this is that controlled experiments on MTs  are relatively diffi-
cult to perform. Inspired by development of elastic shell models for
carbon nanotubes (CNTs), the classical shell theory has been used
for the determination of vibrational frequencies of microtubules
(Wang et al., 2006). Li (2008) proposed an Euler–Bernoulli beam
model to study the influences of surrounding filament network
and cytosol on the microtubule buckling. Also, Huang et al. (2008)
studied surface deflection of a microtubule loaded by a concen-
trated radial force. Based on the nonlocal Timoshenko beam theory,
small scale effects on the persistence lengths and buckling growth
rates of MTs  were investigated by Gao and Lei (2009). In another
work, Tounsi et al. (2010) employed a parabolic shear deformable
beam model to investigate the length-dependence of flexural rigid-
ity and Young’s modulus of microtubules. Civalek et al. (2010)
examined the effects of small length scale on the free vibration
and bending of cantilever microtubules. Civalek and Akgöz (2010)
presented the nonlocal vibration characteristic of MTs  by employ-
ing the Euler–Bernoulli beam model and differential quadrature
method (DQM). They also investigated the buckling analysis of pro-
tein microtubules using strain gradient elasticity theory (Akgöz and
Civalek, 2011). Based on an atomistic-continuum model, the stabil-
ity behavior of MTs  was studied by Xiang and Liew (2011). Further,
using first-order shear deformation shell theory, the wave prop-
agation in microtubules has been studied by Daneshmand et al.

0093-6413/$ – see front matter © 2014 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.mechrescom.2014.01.005

dx.doi.org/10.1016/j.mechrescom.2014.01.005
http://www.sciencedirect.com/science/journal/00936413
http://www.elsevier.com/locate/mechrescom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechrescom.2014.01.005&domain=pdf
mailto:a.farajpour@ut.ac.ir
mailto:ariobarzan.oderj@gmail.com
dx.doi.org/10.1016/j.mechrescom.2014.01.005


A. Farajpour et al. / Mechanics Research Communications 57 (2014) 18–26 19

(2011). These interesting research works are limited to studying
the mechanical properties of MTs  without taking into account sur-
face effects. The surface energy of an elastic solid is related to a few
layers of atoms near its surface and thus the ratio of surface energy
to bulk energy is extremely small in the classical elasticity the-
ory. However, reduction in the structural size to micro/nanometer
regime leads to a significant increase in the surface-to-bulk energy
ratio (Gurtin et al., 1998; Dingreville et al., 2005). Hence, the
surface effects on the mechanical characteristics of micro/nano-
structural elements such as nanowires (Wang and Feng, 2009),
carbon nanotubes (Farshi et al., 2010), nanofilms (Zhang et al.,
2012) and microtubules should be taken into consideration. The
strain gradient theory and nonlocal continuum mechanics are free
from these effects. In addition, the deformation of microtubules is
almost beam-like. Therefore, as anticipated, the results of Timo-
shenko beam model are close to those of the 2D orthotropic shell
model (Heireche et al., 2010). In many cases, except for the systems
where the anisotropic elastic properties of MTs  are important, the
Timoshenko beam model is employed because of its mathematical
simplicity compared to the 2D shell model. Hence, the mechanical
behavior of MTs  including surface effects can be well described by a
modified Timoshenko beam model using surface elasticity theory.

On the other hand, in a neuron (nerve cell) MTs are connected to
each other by microtubule associated proteins (MAPs) to form com-
plex microtubule systems (Hameroff and Penrose, 1996). Hence,
there is a strong scientific need to increase the level of knowledge in
the mechanical properties of complex microtubule systems. From
the literature survey, it is cleared that the surface effect on the buck-
ling and bending behaviors of microtubule networks embedded in a
viscoelastic surrounding cytoplasm is not studied previously. This
motivates us to investigate these problems here. A new closed-
form solution is presented for the length-dependent persistence
length of cantilever MTs. Further, exact solutions are obtained for
the buckling analysis of microtubule networks in viscoelastic sur-
rounding cytoplasm including both surface and shear effects. The
presented approach is validated by comparing the results with
experimental data and analytical solutions available in the open
literature. The results reveal that surface energy has a significant
effect on the mechanical behavior of MTs.

2. Persistence length of microtubules with consideration of
surface effects

Consider a microtubule (MT) of length L with inner and outer
surface layers as shown in Fig. 1. The inner and outer radii of MT
are denoted by Ri and Ro, respectively. Let the thickness of inner
and outer surface layers be ti and to, respectively.

Based on the surface elasticity theory (Gurtin et al., 1998),
the influence of surface energy on the mechanical behavior of
micro/nano-structural elements is taken into account by assum-
ing the solid surface as a layer of zero thickness that is bonded to
the bulk material without slipping. The surface elastic modulus is
defined as Es = Eoto = Eiti where Ei and Eo are the Young’s modulus
of inner and outer surface layers, respectively. The surface stress
tensor (�s

˛ˇ
) can be obtained from the surface energy density (�)

as follows (Cammarata, 1994):

�s
˛ˇ = �ı˛ˇ + ∂�

∂εs
˛ˇ

(1)

where ε˛ˇ is the surface strain tensor and ı˛ˇ represents the Kro-
necker delta. Using the above equation, the linear one-dimensional
constitutive relation of surface layers can be expressed as:

�s = �s + Esεs, �s =
(

� + ∂�

∂εs

)∣∣∣∣
εs=0

(2a,b)

Fig. 1. (a) Schematic representation of a cantilever microtubule under a concen-
trated force. (b) Cross-section view of the microtubule.

Here �s is the surface residual stress when the bulk material is
free of any strains. It has been shown that there are two  important
additional effects on the bending, vibration and buckling responses
of micro/nano-beams due to surface energy (Wang and Feng, 2009;
Farshi et al., 2010). The first surface effect is an increase in the flexu-
ral rigidity of the beam. The second effect is the influence of residual
surface tension on the transverse load. The first surface effect can
be mathematically expressed as:

(EI)∗ = �

4
E(R4

o − R4
i ) + �Es(R3

o + R3
i ) (3)

The surface elastic modulus is extremely small compared with
the Young’s modulus of the bulk material (Es � E), but the surface
elastic modulus is multiplied by R3

i
while, the bulk elastic modulus

is multiplied by R4
i
. Thus, both terms of Eq. (3) have the same order

of magnitude at micro/nano scale and the effect of surface elastic
modulus cannot be ignored. According to the Laplace–Young equa-
tion (Gurtin et al., 1998), the stress jump across both inner and
outer surface layers can be written as:

〈
�+

ij
− �−

ij

〉
ninj = �s

˛ˇ�˛ˇ (4)

where �˛ˇ and ni represent the curvature and unit normal vector
of the surface, respectively. In the above equation, Latin subscripts
range from 1 to 3, but Greek indices take the values of 1 or 2.
Using Eq. (4), the following relationship can be obtained for the
distributed normal pressure caused by residual surface stress.

q(x) = H
∂2w

∂x2
, H = 4�s (Ro + Ri) (5a,b)

where w(x) is the transverse deflection at point x on the mid-
plane. As seen from Eq. (5a,b), the vertical surface load distributed
along the length of MT  (as shown in Fig. 1) depends on the cur-
rent curvature of surface layers. Based on the Timoshenko beam
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