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a  b  s  t  r  a  c  t

We  determine  the general  form  of  the  potential  of the  problem  of  motion  of  a  rigid body  about  a fixed
point,  which  allows  the  angular  velocity  to  remain  permanently  in  a principal  plane  of  inertia  of the  body.
Explicit  solution  of  the problem  of  motion  is  reduced  to inversion  of a single  integral.  A several-parameter
generalization  of  the  classical  case  due  to  Bobylev  and  Steklov  is found.  Special  cases  solvable  in  elliptic
and  ultraelliptic  functions  of time  are  discussed.
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1. Introduction

1.1. Historical

Integrable systems constitute a rare exception in Hamiltonian
mechanics. This is most clearly manifested in the field of rigid body
dynamics in various problem settings, where all known general
integrable cases (integrable for arbitrary initial motion) constitute
few small tables, see e.g. Leimanis (1965), Yehia (1999) and Borisov
and Mamaev (2005). For some new solutions and few recently
added integrable cases see Borisov et al. (2008), Yehia and El-
Mandouh (2013, 2011, 2008), Yehia (2012). In the classical problem
of motion of a rigid body about a fixed point in a uniform gravity
field, integrable only are the three famous cases named after Euler,
Lagrange and Kowalevski (Kovalevskaya), see e.g. Leimanis (1965).
The problem of the heavy gyrostat, resulting from the former by
the addition of a symmetric rotor with its axis fixed in the body,
has three integrable cases generalizing the classical three cases.
Those are the case of Joukovsky, the case of axially symmetric gyro-
stat known as Lagrange’s case (Leimanis, 1965) and the case due to
Yehia (1986).

Another type of problems is named conditionally integrable.
Those are integrable only on a fixed level of the areas integral,
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usually the zero level. For them the procedure of integration of
Hamiltonian systems applies on that level, where the problem
degrees of freedom are lowered by one. A classical example of such
cases is the one due to Goriachev and Chaplygin and its generaliza-
tion to the gyrostat e.g. Leimanis (1965). A relatively large number
of those cases is found recently, which are mainly generalizations
of Kowalevski’s case and like it admit an integral quartic in veloc-
ities, but differs in that this integral is conditional, valid only on
the zero level of the areas integral. At present we have eight cases
of this type, with potential (and gyroscopic in cases) forces (Yehia,
1999, 2006, 2012; Yehia and El-Mandouh, 2013, 2011, 2008). This
relative abundance is a result of the use of new a method of con-
struction of integrable 2D Lagrangian systems, of which integrable
rigid body dynamics come out as special cases e.g. Yehia (2006).
Nevertheless, we do not know whether there are more integrable
potentials for a body with the Kowalevski configuration, and in that
case how many and how to find them?

Second to integrable cases comes particular solutions of equa-
tions of motion of a rigid body in various settings. Those are
solutions subject to certain conditions on the position and angu-
lar velocity, not only on the integrals of motion. For such problems,
the phase space does not necessarily have Hamiltonian structure
and usually one has to manage the equations of motion and the
conditions and to find a suitable way  for performing separation of
variables.

In the present note we  give a generalization of one of the
above particular solutions, namely the solution due to Bobylev and
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Steklov. We  determine the general form of the potential for which
the Bobylev–Steklov condition on the angular velocity is satisfied.
The angular velocity stays permanently in one of the principal
planes of inertia of the body at the fixed point. The new solution
is valid for an arbitrary rigid body without the restriction of the
Bobylev–Steklov case on the moments of inertia.

1.2. Formulation of the problem

Assume that the body is acted upon by certain potential forces,
which admit a symmetry axis fixed in space. The equations of
motion for this problem can be written in the Euler–Poisson form
(e.g. (Leimanis, 1965)):

Aṗ + (C − B)qr = �2
∂V

∂�3
− �3

∂V

∂�2
,

Bq̇ + (A − C)pr = �3
∂V

∂�1
− �1

∂V

∂�3
,

Cṙ + (B − A)pq = �1
∂V

∂�2
− �2

∂V

∂�1
,

(1)

�̇1 + q�3 − r�2 = 0, �̇2 + r�1 − p�3 = 0, �̇3 + p�2 − q�1 = 0, (2)

where A, B, C are the principal moments of inertia, p, q, r are the
components of the angular velocity of the body and �1, �2, �3 are
the components of the unit vector � along the axis of symmetry of
the force field, all being referred to the principal axes of inertia at
the fixed point. The potential V depends only on the Poisson vari-
ables �1, �2, �3 . In the classical problem of a heavy body V = a�1 + b
�2 + c�3 .

Eqs. (1) and (2) admit three general first integrals:

I1 = 1
2

Ap2 + 1
2

Bq2 + 1
2

Cr2 + V, the energy integral (3)

I2 = �2
1 + �2

2 + �2
3 = 1, the geometric integral (4)

I3 = Ap�1 + Bq�2 + Cr�3, the areas integral (5)

In the classical problem of motion of a rigid body about a fixed
point in a uniform gravity field there are eleven solutions of this
type known after authors of the 19th and the 20th centuries. All of
them are collected in Table 1 below (in chronological order):

For a detailed account of those cases see Gorr (2010) or
Dokshevich (1992). Some of them were generalized through the
addition of a gyrostatic moment (Gorr, 2010) and other potential
and gyroscopic forces (Gorr, 2010; Yehia, 1988).

In the present article we aim at exploring the possibility of par-
ticular solutions of the Bobylev–Steklov type for the problem of
motion of a rigid body about a fixed point in a field that generalizes
the classical setting.

2. A new solvable case

The aim of this paper is to look for potentials V which allow full
solution of the system (1) and (2) under the condition

q = 0 (6)

on the zero level of the areas integral, i.e.

I3 = 0 (7)

We assume that A /= C, without restriction on the third moment
of inertia B. This choice of the problem is motivated by the classi-
cal Bobylev–Steklov solution, which is characterized by the same
condition (6) but with the potential V = a�1 and the additional
restriction on the moments of inertia A = 2C, which is not imposed
here.

Our result is formulated in the following

Theorem 1. For an arbitrary rigid body moving about a fixed point
while acted upon by forces with a potential V satisfying the linear
partial differential equation

�1�2�3

(
A

∂2
V

∂�2
1

− C
∂2

V

∂�2
3

)
− �2(A�2

1 − C�2
3 )

∂2
V

∂�1∂�3
+ (A�2

1

+ C�2
3 )

(
�1

∂2
V

∂�2∂�3
− �3

∂2
V

∂�1∂�2

)
− (A − 2C)�2�3

∂V

∂�1

+ 2(A  − C)�3�1
∂V

∂�2
− (2A  − C)�1�2

∂V

∂�3
= 0 (8)

the Euler–Poisson equations (1) and (2) admit the solution
parametrized in terms of �1 by expressions

p = −
√

C�3

A(A − C)�1

(
�1

∂V

∂�3
− �3

∂V

∂�1

)
,

q = 0,

r =
√

A�1

C(A − C)�3

(
�1

∂V

∂�3
− �3

∂V

∂�1

) (9)

�3 = ��C/A
1 , � = const. (10)

�2 =
√

1 − �2
1 − �2� (2C/A)

1 (11)

and the relation with time is given by

t =
∫

d�1√
g(�1)

(12)

where

g(�1) = A� (A−C)/A
1

C(A − C)�
(1 − �2

1 − �2� (2C/A)
1 )

(
�1

∂V

∂�3
− �3

∂V

∂�1

)
0

and ()0 in the right hand side means the value of the expression in
virtue of the relations (10) and (11), so that g is a function of the single
variable �1.

Proof. From (6) and the middle equation of (1) we  get

(A − C)pr − �3
∂V

∂�1
+ �1

∂V

∂�3
= 0 (13)

Differentiating this equality and using Eqs. (1)–(7) we  arrive at
two homogeneous linear algebraic equations whose compatibility
condition gives Eq. (8) for V . Using one of them with Eq. (13) we
get the expressions (9) for p, q .

On the other hand, from the first and third equations of (2), in
virtue of (6), we have

d�3

d�1
= �̇3

�̇1
= C

A

�3

�1
(14)

This can be readily integrated to give (10), and then (11) follows
from (4).

Thus, five of the six Euler–Poisson variables are expressed in
terms of �1 . The relation (12) with time can be determined by
separation of variables in the first of the set of Poisson equations.�

3. The general form of the solution

It is not hard to construct the general solution of the linear PDE
(8), which may  be written in the form

V = V1 + V2, (15)
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