
Mechanics Research Communications 57 (2014) 74–81

Contents lists available at ScienceDirect

Mechanics  Research  Communications

journa l h om epa ge: www.elsev ier .com/ locate /mechrescom

A  reduction  model  for  eigensolutions  of  damped  viscoelastic
sandwich  structures

Faiza  Boumedienea,∗,  Jean-Marc  Cadoub,  Laëtitia  Duigoub, El  Mostafa  Dayac,d

a Laboratoire de Mécanique Avancée, Faculté de Génie Mécanique et Génie des Procédés, Université des Sciences et de la Technologie Houari Boumediene,
BP  32, El Alia, 16111 Bab Ezzouar, Alger, Algeria
b Laboratoire d’Ingénierie des Matériaux de Bretagne, Université Européenne de Bretagne, Université de Bretagne Sud, Rue de Saint Maudé, BP 92116,
56321  Lorient Cedex, France
c Laboratoire d’Etude des Microstructures et Mécanique des Matériaux, UMR CNRS 7239, Université de Lorraine, Ile du Saulcy, 57045 Metz Cedex, France
d Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures (‘DAMAS’), University of Lorraine, Metz, France

a  r  t  i  c  l e  i  n  f  o

Article history:
Received 8 April 2013
Received in revised form 6 February 2014
Accepted 1 March 2014
Available online 11 March 2014

Keywords:
Sandwich structure
Reduction model
High order Newton method
Beam
Cylindrical shell

a  b  s  t  r  a  c  t

The  aim  of  this  paper  is to  develop  a  reduction  method  to determine  the  modal  characteristics  of  vis-
coelastic  sandwich  structures.  The  method  is  based  on the  high  order  Newton  algorithm  and  reduction
techniques.  Numerical  tests  have  been  performed  in  the case  of  sandwich  beams  and  cylindrical  shells.
The comparison  of  the  results  obtained  by  the  reduction  method  with  those  given  by  direct  simulation
shows  both  a good  agreement  and a significant  reduction  in  computational  cost.

© 2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

To reduce vibrations and noise, viscoelastic materials are often
used in many domains (e.g. the aerospace industry, the auto-
mobile industry) as passive damping solutions. To maximize this
kind of damping, these materials are usually sandwiched between
two identical elastic layers. In this configuration, the damping is
introduced by an important shear deformation in the viscoelastic
central layer. However, the modeling of free vibration problems
in viscoelastic sandwich structures involves complex nonlinear
eigenvalue problems whose resolution leads to two  relevant modal
parameters: natural frequencies and loss factors. The nonlinearity
is principally due to the dependency of viscoelastic behavior on the
frequency (Daya and Potier-Ferry, 2001).

Many investigations have focused on viscoelastic sandwich
structures modeling. A review of various theories can be found in
Ferreira et al. (2013) and Alvelid (2013). The viscoelastic sandwich
eigenvalue resolution leads to nonlinear complex equations. This
issue has remained relevant to researchers until now, because of its
complexities. Consequently, many research studies can be found in
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this field. For example, Daya and Potier-Ferry (2001) developed a
continuation method to determine the natural frequencies and the
loss factors of viscoelastically damped sandwich structures. They
start from the undamped eigenmodes, from which they deduce the
viscoelastic modes by using the perturbation technique. Duigou
et al. (2003) developed two  numerical iterative algorithms for
the vibrations of damped sandwich structures. These methods
associate homotopy, asymptotic numerical techniques, and Padé
approximants. The first one is a sort of high order Newton method;
the second one uses a more or less arbitrary matrix. Chen and Chen
(2007) analyzed the non-axisymmetric vibration and stability
problem of the rotating sandwich plate by using the finite ele-
ment method, taking into account the effects of transverse shear
and rotary inertia. Banerjee et al. (2007) developed an accurate
dynamic stiffness matrix for a three-layered sandwich beam of
asymmetric cross-section using the Timoshenko beam theory,
Hamiltonian mechanics, and symbolic computation. The resulting
dynamic stiffness matrix is applied using a Wittrick–Williams
algorithm to compute the natural frequencies and mode shapes of
some illustrative examples. The authors carried out experimental
tests to validate their results. Arikoglu and Ozkol (2010) used a
differential transform method in the frequency domain to solve the
free vibration equations of a three-layered composite beam with
a viscoelastic core. Adhikari and Pascual (2011) proposed a new
iterative approach, based on the Biot model, for the calculation of
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eigenvalues of single and multiple degree-of-freedom viscoelastic
systems. Damanpack and Khalili (2012) investigated high-order
free vibration in three-layered symmetric sandwich beams using
the dynamic stiffness method. Attipou et al. (2013) presented
a multiscale numerical technique for the free vibration analysis
of heterogeneous materials with a constant complex modulus.
Researchers have examined the influence of different parameters
on the passive damping of the structure. Pawlak and Lewandowski
(2013) studied the dynamic characteristics of structures with
viscoelastic dampers. They have used the classical and fractional
theological models and the continuation method. Many research
studies are focused on the parametric study and optimization of
viscoelastic structures (Araújo et al., 2012; Sher and Moreira, 2013;
Moita et al., 2013).

The issue is that the methods mentioned above could lead to
high computational cost in the case of large-scale structures, and
only a few studies have focused on cost reduction. Park et al. (1999)
used a condensation method to remove only the internal vari-
ables of viscoelastic properties. Chen et al. (1999) proposed an
iterative reduction method for viscoelastic structures with con-
stant complex modulus. They predicted the damping property in
two steps: the first-order asymptotic solution of the nonlinear real
eigen equation and the order-reduction-iteration of the nonlin-
ear complex eigen equation. Some authors have used a one-mode
Galerkin’s procedure to analyze linear and nonlinear vibrations in
viscoelastic sandwich structures (Daya et al., 2004; Bilasse et al.,
2010, 2011). de Lima et al. (2010) suggested a robust condensation
procedure combined with a sub-structuring technique, intended to
be used for dealing with large-scale viscoelastically damped struc-
tures but only in the case of forced frequency response. Chazot et al.
(2011) used a method based on a Padé approximant to reduce the
computation time in the dynamic response computation model of
multilayered viscoelastic structures. This acceleration technique
leads to fast frequency sweep computations, as compared to a
standard direct method. More recently, Bilasse and Oguamanam
(2013) used real and complex eigenvectors to reduce the forced
harmonic equation of large-scale sandwich plates with a viscoelas-
tic core. However, the complex basis requires a nonlinear complex
eigenvalue problem resolution.

In this paper, a reduction method for solving the complex non-
linear eigenvalue problem efficiently in the case of large-scale
viscoelastic structures is proposed. As in de Lima et al. (2010),
the reduction basis is built from real eigenmodes and elastic and
viscoelastic stiffness matrices. The reduced complex eigenvalue
problem could be resolved by any method cited in the second para-
graph above. For instance, the high order Newton algorithm ‘HONA’
proposed by Duigou et al. (2003) is considered. This high order
algorithm is an iterative one based on the coupling of a homo-
topy transformation and a perturbation technique. This method
is efficient but needs triangulation of the stiffness matrix at each
iteration. This leads to a significant computational time for large-
scale structures. Hence, coupling this method with the reduction
technique can reduce the computational cost and memory space
considerably and gives an efficient method. The validity and effec-
tiveness of the present method are illustrated in several numerical
examples of beams and shell.

2. Problem formulation and reduction model

Assuming the faces and the core are isotropic, the finite element
modeling of free vibration in sandwich structures within viscoelas-
tic cores yields a complex nonlinear residual problem (Daya and
Potier-Ferry, 2001; Duigou et al., 2003):

R(U, p) = 0 (1)

where R(U, p) = [K(0) + E(p)Kv + p2M]U represents the residual
vector of dimension [ND]; p = iω is a complex number and ω is the
vibration circular frequency; U is the eigenmode of dimension [ND];
M is the global mass matrix of dimension [ND × ND]; [K(0)] and [Kv]
are real constant stiffness matrices of dimension [ND × ND]; E(p) is
the complex Young’s modulus of the viscoelastic core.

As said previously, several methods exist to solve the nonlinear
eigenvalue problem (1) directly. So, the jth damped circular fre-
quency ωj and the jth modal loss factor �j are obtained using the
following formula:

ω2
j = ˝2

j (1 + i�j) (2)

where �j is the jth damped circular frequency (the jth damped
frequency fj = ˝j/2�) and (i2 = −1).

However, these methods entail a considerable computational
cost, especially in the case of large-scale structures, mainly due to
the complex tangent matrix triangulations required in nonlinear
solver iterations. In order to reduce the computational cost, a reduc-
tion technique applied to Eq. (1) has been developed. To do so, the
displacement vector is projected onto a small basis:

U = �u (3)

where � [ND × nd] is  the projection matrix and u[nd] is the reduced
vector.

The reduction model must generate small and limited approxi-
mation errors. The system properties, such as stability, must also be
preserved. The key point of the reduction technique is the choice
of the reduced matrix �. This reduction matrix must adequately
characterize the nonlinear dynamic response of the structure,
and it must be able to approximate the solution in a significant
time interval. Moreover, its columns must be linearly indepen-
dent. Numerous matrices built from (linear eigenvectors, real and
imaginary parts of complex eigenvectors, vectors issued from first
computation without reduction, etc.) have been tried. Bases built
from linear eigenvectors do not give good results even if a large
number of modes were taken into account. This is certainly due to
the viscoelastic properties of the structure which are not included
in the linear modes. The other bases cited above necessitate a large
number of columns in order to obtain good results, or they require
an update of the base for the computation of each mode. Hence,
the base needs a significant computational time to be built and this
is not efficient. To reduce the computational time, the base should
have a small number of columns, and it should be able to yield good
results for different modes.

After trying numerous matrices, we found that the best one
(among those used) consists of a matrix built by using linear eigen-
vectors �, the elastic linear matrix K(0), and the viscoelastic matrix
Kv (de Lima et al., 2010). Then, the projection matrix that is used is
given as follows:

� = [ � K(0)−1Kv� ] (4)

Then, if ‘Ne’  eigenvectors are taken into account in the reduced
matrix, the eigenvector matrix is given as follows:

� = [�1, . . .,  �Ne] (5)

where �i are the eigenvectors and the solutions of the problem:

(K(0) − ω2
i M)[�i] = 0 (6)

The reduced matrix of dimension (nd = 2 × Ne)  is given as fol-
lows:

� = [�1, . . ., �N, K(0)−1Kv�1, . . .,  K(0)−1Kv�N] (7)
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