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a  b  s  t  r  a  c  t

A  paper  focuses  on  the  use  of the  method  of  sampling  surfaces  (SaS)  for  the  exact  three-dimensional
(3D)  heat  conduction  analysis  of  laminated  orthotropic  and  anisotropic  shells.  This  method  is  based  on
selecting  inside  the nth  layer  In not  equally  spaced  SaS parallel  to the  middle  surface  of  the  shell  in order
to  choose  the  temperatures  of  these  surfaces  as basic  variables.  Such  an idea  permits  the  representation  of
the  proposed  thermal  laminated  shell  formulation  in a very  compact  form.  The  SaS  are located  inside each
layer at  Chebyshev  polynomial  nodes  that  improves  the  convergence  of  the  SaS  method  significantly.  As a
result,  the  SaS  method  can  be  applied  efficiently  to  exact  3D  solutions  of  the  steady-state  heat  conduction
problem  for  cross-ply  and angle-ply  composite  shells  with  a  specified  accuracy  using a  sufficient  number
of SaS.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, it is well established that for the accurate analysis
of quasi-static thermoelasticity and thermopiezoelectricity prob-
lems for orthotropic and anisotropic laminated plates and shells it
is necessary to solve the Fourier heat conduction equation because
no prescribed through-thickness temperature distributions can be
utilized (see, e.g. Tungikar and Rao, 1994; Savoia and Reddy, 1995;
Soldatos and Ye, 1995; Kapuria et al., 1997; Tauchert et al., 2000;
Vel and Batra, 2001, 2003; Brischetto, 2009; Brischetto and Carrera,
2011). This means that any algorithm for the numerical solution
of the Fourier heat conduction equation must be incorporated in
advanced computational models developed for the thermal stress
analysis of laminated composite shells of arbitrary geometry and
general layup configurations (Noor and Burton, 1992; Reddy, 2004).
However, it is not a simple task because we deal here with the par-
tial differential equation with variable coefficients depending on
the thickness coordinate and many nodes in the thickness direction
can be required to find the reliable results for thick shells.

To solve such a problem efficiently, we invoke the method
of sampling surfaces (SaS) developed recently for the exact
three-dimensional (3D) stress analysis of elastic and piezoelec-
tric laminated plates (Kulikov and Plotnikova, 2012b, 2013a) and
shells (Kulikov and Plotnikova, 2013b, 2013c). As SaS denoted by
˝(n)1, ˝(n)2, . . .,  ˝(n)In , we select outer surfaces and any inner
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surfaces inside the nth layer in order to introduce the tempera-
tures T(n)1, T(n)2, . . .,  T(n)In of these surfaces as basic shell variables,
where In is the number of SaS chosen for each layer (In ≥ 3). This
choice of temperatures with the consequent use of Lagrange poly-
nomials of degree In − 1 in the thickness direction for each layer
permits the representation of the governing equations in a very
compact form. It is important that the developed approach with
the arbitrary number of equally spaced SaS inside the shell body
(Kulikov and Plotnikova, 2011a, 2011b) does not work properly
with Lagrange polynomials of high degree because the Runge’s phe-
nomenon can occur, which yields the wild oscillation at the edges
of the interval when the user deals with any specific functions. If
the number of equispaced nodes is increased then the oscillations
become even larger. Fortunately, the use of Chebyshev polynomial
nodes (Kulikov and Plotnikova, 2012b, 2013c) can help to improve
significantly the behavior of Lagrange polynomials of high degree
for which the error will go to zero as In→ ∞.

An idea of using the SaS can be traced back to contributions
of Kulikov (2001), and Kulikov and Carrera (2008) in which three,
four and five equally spaced SaS are utilized. It is necessary to men-
tion that in a layerwise differential quadrature (LWDQ) analysis
(Liew et al., 2002, 2003; Zhang et al., 2003; Malekzadeh, 2009;
Malekzadeh et al., 2008; Setoodeh et al., 2011) the nodal surfaces
inside the mathematical layer are introduced following the general
layerwise concept (Reddy, 2004; Carrera, 2003). The main differ-
ence consists in the lack of possibility to employ the Lagrange
polynomials of high degree in the thickness direction. This is due
to the fact that in a conventional LWDQ formulation only equally
spaced nodal surfaces inside the mathematical layer are admissible
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with the use of the simplest Lagrange polynomials of first and sec-
ond orders. The next feature of the LWDQ method is that each nodal
surface is discretized into a set of grid points in both plane direc-
tions. This means that one deals here with a numerical technique.
On the contrary, the SaS method can be used efficiently for ana-
lytical developments (Kulikov and Plotnikova, 2012b, 2013c) and
numerical implementations in strong and weak forms (Kulikov and
Plotnikova, 2011a, 2011b, 2012a) as well.

The same concerns the finite layer method (Cheung and Jiang,
2001), which is the most efficient semi-analytical method for the 3D
analysis of simply supported plates and shells (Akhras and Li, 2007,
2010; Wu and Li, 2010; Wu  and Chang, 2012; Wu and Kuo, 2013).
In this method, the shell is divided into a number of finite layers.
Within each finite layer, the trigonometric functions are employed
for in-plane interpolations of displacements in a displacement-
based formulation (Wu and Kuo, 2013) and additionally transverse
stresses in a mixed formulation (Wu and Chang, 2012), whereas the
lower-order Lagrange polynomials with equispaced nodal points
are accepted for the interpolation in the thickness direction, i.e.
the h-refinement is adopted. Thus, the difference between the SaS
method and the finite layer method consists in the following: the p-
refinement is used in the former, while the h-refinement is used in
the latter. Wu and his coauthors showed convincingly that the finite
layer method with equally spaced nodal surfaces yields good pre-
dictions of the mechanical behavior of composite plates and shells.
However, the 3D solutions derived are approximate. To obtain the
exact 3D solutions, the p-refinement should be invoked. As pointed
out earlier, the SaS method utilizes the Lagrange polynomials of
high degree with Chebyshev polynomial nodes that allows one to
minimize uniformly the error due to Lagrange interpolation. This
fact gives an opportunity to find the exact 3D solutions for thermal
laminated composite shells with a prescribed accuracy employing
the sufficiently large number of SaS.

The present paper is intended to show that the SaS method can
be applied efficiently to the exact solutions of some 3D steady-state
problems of the heat conduction theory of laminated composite
shells. The authors restrict themselves to finding five right digits
in all examples presented except for a Section 4 with the results of
the convergence study. The better accuracy is possible but requires
more SaS inside each layer to be taken.

2. Description of temperature field

Consider a thick laminated shell of the thickness h. Let the mid-
dle surface  ̋ be described by orthogonal curvilinear coordinates
�1 and �2, which are referred to the lines of principal curvatures
of its surface. The coordinate �3 is oriented along the normal to
the middle surface. Introduce the following notations: A˛ are the
coefficients of the first fundamental form of the middle surface;
k˛ are the principal curvatures of the middle surface; �(n)in

3 are the
transverse coordinates of SaS of the nth layer given by
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where �[n−1]
3 and �[n]

3 are the transverse coordinates of layer inter-

faces ˝[n−1] and ˝[n] depicted in Fig. 1; hn = �[n]
3 − �[n−1]

3 is the
thickness of the nth layer; In is the number of SaS corresponding to
the nth layer; the index mn identifies the belonging of any quantity
to the inner SaS of the nth layer and runs from 2 to In − 1, whereas
the indices in, jn, kn to be introduced later for describing all SaS of
the nth layer run from 1 to In; the index n identifies the belonging
of any quantity to the nth layer and runs from 1 to N, where N is
the total number of layers. Besides, the tensorial indices i, j range
from 1 to 3 and Greek indices ˛,  ̌ range from 1 to 2.

Fig. 1. Geometry of the laminated shell.

Remark 1. The transverse coordinates of inner SaS (1) coincide
with the coordinates of Chebyshev polynomial nodes (Burden and
Faires, 2010). This fact has a great meaning for a convergence of the
SaS method (see, e.g. Kulikov and Plotnikova, 2012c).

The relation between the temperature T and the temperature
gradient � is given by

� = ∇T. (2)

In a component form, it can be written as

�˛ = 1
A˛c˛

T,˛, �3 = T,3, (3)

where c˛ = 1 + k˛�3 are the components of the shifter tensor; the
symbol (. . .),i stands for the partial derivatives with respect to coor-
dinates �i.

We start now with the first assumption of the proposed thermal
laminated shell formulation. Let us assume that the temperature
and temperature gradient fields are distributed through the thick-
ness of the nth layer as follows:
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where T(n)in (�1, �2) are the temperatures of SaS ˝(n)in of the nth
layer; � (n)in

i
(�1, �2) are the components of the temperature gra-

dient at the same SaS; L(n)in (�3) are the Lagrange polynomials of
degree In − 1 defined as
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The use of relations (3), (4), (6) and (7) yields

� (n)in
˛ = 1

A˛c(n)in
˛

T (n)in
,˛ , (9)

� (n)in
3 =

∑
jn

M(n)jn (�(n)in
3 )T (n)jn , (10)



Download English Version:

https://daneshyari.com/en/article/800905

Download Persian Version:

https://daneshyari.com/article/800905

Daneshyari.com

https://daneshyari.com/en/article/800905
https://daneshyari.com/article/800905
https://daneshyari.com

