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a  b  s  t  r  a  c  t

The  resonance  frequencies  of  a pre-stretched  circular  membrane  of  a dielectric  elastomer  are  investigated.
The  resonance  frequencies  increase  with  mode  and  thickness  of the  membrane,  but  they  decrease  in air
from  those  in vacuum  due  to  the  added  mass  of  air. The  damping  of air  is  low  and  has  negligible  effect
on  the  frequencies;  however,  it helps  to reduce  the amplitude  of  vibration,  comparing  with  that  in  the
vacuum.  The  frequencies  decrease  with  an  increase  of the  applied  voltage,  the  mass  of  the electrodes,
and  the  radius  of  the  circular  membrane.  The  effect  of  applied  pressure  on the resonance  frequencies  of
the  membrane  is not  significant.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Dielectric elastomers are smart and electroactive materials
which deform due to the applied voltage. The membrane of dielec-
tric elastomers has many applications (Heydt et al., 2000; Dubois
et al., 2008; Koh et al., 2009; McKay et al., 2010; Zhu et al., 2010;
Fox and Goulbourne, 2008, 2009; Chakravarty and Albertani, 2011a,
2012) that include in robotics, cardiac membrane pump, an artificial
bicep for orthotic and prosthetic technology, programmable hap-
tic surfaces, loud speakers, micro air vehicles, energy harvesting,
active noise control, sensing, and RF filtering where the resonance
frequencies may  need to be very precisely controlled. It is very
important to investigate the resonance frequencies of the dielec-
tric elastomer’s membrane for these types of device design and
optimization. Recently, many people are investigating the mechan-
ical properties of the membrane of dielectric elastomers due to
its diverse applications, ease of fabrication, low cost, and high
deformability. Quasi-static experiments were conducted for esti-
mating the hyperelastic material properties of the membrane (Fox
and Goulbourne, 2008, 2009; Chakravarty and Albertani, 2011b).
Experimental vibration analysis of the membrane was presented
by Fox and Goulbourne (2008, 2009), Chakravarty and Albertani
(2011a, 2012), and Jenkins and Korde (2006). It is found from the
experimental results that the resonance frequencies and ampli-
tude of vibration of a membrane change due to the added mass
and damping of surrounding air (Chakravarty and Albertani, 2011a,
2012).
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The nonlinear vibration characteristics of the membrane were
investigated by a few researchers (Zhu et al., 2010; Fox and
Goulbourne, 2008, 2009; Chakravarty and Albertani, 2011a, 2012;
Gonç alves et al., 2009; Jenkins and Leonard, 1991; Mockensturm
and Goulbourne, 2006; Tuzel and Erbay, 2004; Jiang et al.,
1992), where hyperelastic material models were considered.
There are several hyperelastic material models available, such
as Mooney–Rivlin, neo-Hookean, Ogden, Yeoh, and Arruda–Boyce
hyperelastic material models (Chakravarty and Albertani, 2011b;
Mooney, 1940; Rivlin, 1948; Treloar, 1944; Boyce and Arruda, 2000;
Yeoh, 1993). Gonç alves et al. (2009) developed the analytical and
finite element (FE) models for examining the dynamic behavior of
a radially pre-stretched circular membrane without the effect of
voltage and the added mass of surrounding fluid. Zhu et al. (2010)
investigated the resonant behavior of a pre-stretched membrane of
a dielectric elastomer without the effect of added mass and damp-
ing of surrounding air.

This paper presents the analytical and FE models for investigat-
ing the vibration characteristics of a radially pre-stretched circular
membrane of a dielectric elastomer. The effect of voltage, added
mass, damping, and pressure on the resonance frequencies of the
membrane is examined. The variations of resonance frequencies
with the mass of two  electrodes, thickness and radius of the mem-
brane are also investigated.

2. Analytical model

For the analytical solution, a flat circular membrane specimen of
initial radius of Ri and initial thickness of hi is radially pre-stretched
and clamped at the boundary with a rigid ring of radius of Rf (stretch
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ratio � = Rf/Ri). Thin carbon grease electrodes are attached to the top
and bottom surfaces of the membrane for applying the DC voltage
of E. The Mooney–Rivlin hyperelastic material model is considered
for the membrane and the Mooney–Rivlin hyperelastic material
parameters are C1 and C2. The out-of-plane deformation of a point
at an arbitrary location X (r, �) on the membrane is w(r, �, t) due to
vibration. The equation of motion can be expressed in cylindrical
coordinate system as (Chakravarty, 2013).
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for 0 ≤ r < Rf, 0 ≤ � ≤ 2� and w(Rf, �, t) = 0, where cs
2 ={

[2(C1 + C2) + 2C2(�2 − 1)](1 − 1/�6) − ε[E/(hf �)2} /�, ε is
the permittivity of the membrane, hf is the thickness of the
pre-stretched membrane (hf = hi/� 2), and � is the density
of the membrane-electrode material system. The princi-
pal in-plane pre-stresses of the membrane are equal to
[2(C1 + C2) + 2C2(� 2 − 1)](� 2 − 1/� 4) − εE2. The free vibration
modes wmn(r, �, t) are found by solving the above equation
(Chakravarty, 2013), based on the required boundary and
continuity conditions, i.e.
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where Amn is an arbitrary constant and known as the modal ampli-
tude of vibration; Jm is the m-th order (m = 0, 1, 2, . . .,  ∞)  Bessel
function of the first kind; �mn are the zeros of the Bessel function,
Jm (n = 1, 2, 3, . . .,  ∞); ωmn is the circular resonance frequency of the
(m, n) mode of vibration and can be calculated from the following
equation.

ωmn = �mm

√
[2(C1 + C2) + 2C2(�2 − 1)](1 − 1/�6) − ε[E/(hf �)]2

�Ri
2

(3)

The surrounding air exerts force and opposes the movement
when the membrane vibrates in air. The added mass is the mass
of the surrounding air that is required to accelerate for the accel-
eration of the membrane. As a result, the resonance frequencies
of the membrane decrease due to the effect of added mass. The
added mass depends on the geometry of the membrane and the
density of air. The added mass ma of the circular membrane is
ma = (8/3)R3

f
�a when it vibrates in air (Chakravarty and Albertani,

2011a, 2012; Azuma, 2006), where Rf and �a are the radius of the
circular membrane and density of surrounding air, respectively.

3. Results and discussion

For this paper, a circular membrane specimen of the dielectric
elastomer VHB 4910 is radially pre-stretched at stretch ratio of 3
and attached to a circular rigid ring of radius of 50 mm.  The ini-
tial thickness, density, and dielectric constant of the membrane
are 1.0 mm,  960 kg/m3 and 4.55, respectively (Zhu et al., 2010).
The Mooney–Rivlin hyperelastic material parameters of the mem-
brane are C1 = 16 kPa and C2 = 7.3 kPa (Fox and Goulbourne, 2008).
The mass of the electrodes is considered 4 times higher than that
of the membrane specimen (Zhu et al., 2010). The stretch ratio,
geometry (radius and thickness) of the membrane, and the mass of
the electrodes remain same as above for computing the resonance
frequencies, excluding where they are mentioned in the following
paragraphs.

An FE model is also developed for investigating the vibration
characteristics of the pre-stretched circular membrane, clamped
at the boundary, using the FE analysis software, Abaqus 6.10®

Fig. 1. Resonance frequencies vs. voltage plots for the membrane specimen in air.

(SIMULIA, Providence, Rhode Island 02909, 2010). The FE model
is developed considering the following three steps.

(1) Calculate the principal in-plane pre-stresses of the membrane
including the effect of the electrostatic force.

(2) Define the pre-stresses of the membrane as input data and run
the linear and nonlinear static analysis.

(3) Run the resonance frequency analysis of the membrane includ-
ing the effect of damping, added mass of air, and mass of the
electrodes.

M3D6 (6-node quadratic triangular membrane) type of ele-
ments are selected for the membrane. The effect of added mass
of surrounding air is included in the FE model. The added mass of
surrounding air is added with the actual mass of the membrane
in the FE model. Rayleigh damping is considered and the damp-
ing is provided in the FE model as Rayleigh damping parameters
(Chakravarty and Albertani, 2011a, 2012; Cook et al., 1989). The
convergence of the resonance frequencies of the membrane is stud-
ied and it is found that the frequencies converge on the order of
1000 degrees of freedom. It is also found that the FE model corre-
lates well with the experimental data, reported by Chakravarty and
Albertani (2012).

Resonance frequencies of the pre-stretched circular membrane
specimen at different voltages are computed in vacuum and in
air (at atmospheric pressure) by using both the analytical and FE
models and the first three mode resonance frequencies in air are
shown in Fig. 1. A good correlation is found among the resonance
frequencies computed by the analytical and FE models (vary less
than 0.05%). Fig. 1 depicts that resonance frequencies increase with
mode. It is well known that the first (0, 1) mode frequency means
the fundamental (lowest) frequency of vibration. So the second (1,
1) mode frequency is higher than that of the first mode and so on.
Resonance frequencies of the membrane specimen decrease 4.54%
in air from those in vacuum due to the added mass of surrounding
air. The frequencies decrease because the mass of the membrane
increases due to the added mass of the surrounding air, although the
stiffness of the membrane remains constant. Fig. 1 also shows that
resonance frequencies decrease with voltage. The applied voltage
helps to reduce the internal stress of the pre-stretched mem-
brane (Zhu et al., 2010). As a result, the stiffness of the membrane
decreases which leads to the decrease of the resonance frequencies
due to an increase of applied voltage.

The variation of the first (0, 1) mode resonance frequency with
the ratio of the masses of the electrode and the membrane speci-
men  at three different voltages (0, 5, and 10 kV) in air is shown in
Fig. 2. The ratio is calculated by dividing the mass of the electrodes
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