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a  b  s  t  r  a  c  t

A  version  of  elastic  compensation  is  evaluated  in the  context  of  stress  and  deformation  analysis  of elas-
tic/plastic  rotating  circular  disks  of  both  constant  and  variable  thicknesses  undergoing  small  deflections.
An  iterative  incremental  method  is combined  with  finite  difference  methodology  to  generate  information
about  the  entire  quasistatic  loading  histories  of  such  disks.  The  evaluation  process  involves  comparison
of  representative  numerical  results  with corresponding  predictions  existing  in the  literature.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The method of elastic compensation has been proposed as a way
to minimize simulation times by using linear elasticity modules
in commercial finite element packages to perform elastic/plastic
stress and deformation analysis approximately. As can be seen from
the papers of Seshadri (1991), Mohamed et al. (1999), Desikan
and Sethuraman (2000), Reinhardt and Mangalaramanan (2001),
and Yang et al. (2012); there are a number of variants of this
methodology which have been given different names. Here elas-
tic compensation is used to refer to all such procedures. The basic
idea is to iteratively modify the elastic properties appearing in a
linear elastic formulation to simulate yielding. A natural way  to
do this is to use a specific type of deformation plasticity model. In
the present paper the evaluation of this approach to elastic com-
pensation, as exemplified by the papers by Khalili et al. (2004) on
trusses and by Wu et al. (2003) and Upadrasta et al. (2006) on plates,
is continued using test problems associated with rotating discs. It
should be emphasized that the purpose of the present work is nei-
ther to report new information about rotating disks nor to develop
the elastic compensation approach further, but to contribute to
the evaluation of elastic compensation. Gaining confidence in an
approximate method requires testing in a variety of situations. This
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is especially true in the case of elastic compensation, where several
different approaches have been proposed.

Classical work on the elastic/plastic analysis of stresses and
deformations in rotating discs was summarized in early plasticity
texts such as Hoffman and Sachs (1953). Representative of more
recent contributions are the papers by Güven (1997, 1998), Rees
(1999), Eraslan (2002a,b), Eraslan and Orcan (2002), Eraslan and
Argeso (2002), Eraslan et al. (2005), Vivio and Vullo (2010), and
Aleksandrova (2012). This extensive literature is helpful in the eval-
uation of elastic compensation and some of the results reported in
these papers will be used subsequently for that purpose.

The reminder of the paper is organized as follows: Section 2
presents a set of governing equations for elastic compensation
based stress and deformation analysis of rotating discs using the
usual plane stress approach. Section 3 presents and discusses a
representative sample of numerical results. Section 4 presents a
summary of the work and recapitulates the most important con-
clusions.

2. Formulation

Consider a linearly elastic annular disk of inner radius ri, outer
radius ro, thickness h, modulus of elasticity E, Poisson’s ratio �, and
mass density � rotating with constant angular velocity ω in a hor-
izontal plane. It will be convenient to describe the behavior of the
disk using the cylindrical coordinates r, �, and z with the latter being
the axis of rotation and the r, � plane being the middle surface of the
disk. The respective radial and circumferential normal stresses will
be denoted by �r and �� . It will be assumed in all subsequent work
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that all quantities depend only on r and that deformations are small.
Differentiation with respect to r will be denoted by a superposed
prime.

A radial balance of linear momentum leads to

(hr�r)′ − h�� + h�ω2r2 = 0 (1)

The plane stress forms of Hooke’s law for an isotropic linearly elastic
material are

�r = E(u′ + �u/r)
1 − �2

, �� = E(u/r + �u′)
1 − �2

(2)

where u is the radial displacement. Substituting Eq. (2) into Eq. (1)
and regarding h, E, �, and � as functions of r creates the differential
equation
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Elastic compensation (iteratively modifying the elastic proper-
ties used in a linearly elastic formulation to simulate yielding) is
accomplished herein by treating � and � as constants and using
a generalization of a one-dimensional relationship developed in
Goldberg and Richard (1963) and Richard and Abbott (1975) for
the effective modulus of elasticity, namely

E = E0

(
1 − S

(1 + IM)1/M
+ S

)
(4)

where

I = E0(1 − S)ε
�I

; (5)

E0, S, M,  and �I are constants; and ε is the strain invariant

ε =
(

u′2 + (u/r)2 + 2�uu′/r

1 − �2

)1/2

(6)

Combining Eqs. (3)–(6) creates a nonlinear differential equation
which, in general, requires numerical solution. Eqs. (4)–(6) can be
thought of as describing a strain invariant based deformation model
of plasticity. Their use automatically modifies the elastic properties
of the material in such a way as to simulate elastic/plastic response.
Thus, as indicated earlier, this is a natural way to implement elas-
tic compensation. As with all deformation plasticity models, this
model can be applied with confidence only in monotonic loading
situations. Deformation plasticity models of this kind are not new
(see, for instance, Naghdi (1952) and Novozhilov (1953)), but do
not appear to have been widely adopted. A recent application is
discussed by Goel et al. (2011) who use a model similar to but more
sophisticated than that described by Eqs. (4)–(6). The use of non-
linear elasticity modules in commercial finite element packages to
mimic  elastic/plastic response can also sometimes be interpreted
as elastic compensation of the type discussed herein.

The uniaxial version of the stress/strain relation discussed above
(see Fig. 3 of Wu et al., 2003; with n and R therein playing the
respective roles of M and S in the present work) exhibits a linear
elastic asymptote with modulus of elasticity E0 and a linear strain
hardening asymptote with effective yield stress �I and plastic mod-
ulus SE0 connected by an elbow controlled by the value of M (the
larger the M,  the smaller the elbow). Varying M makes it possi-
ble to model materials both with and without definite yield points
(stainless steel being an example of the latter). The two  asymptotes

intersect at I = 1. For large values of M (small elbows), therefore,
I = 1 is good indicator of yielding and will be used as such subse-
quently. In particular, the corresponding stress �I/(1 − S) will be
identified with the yield stresses used by various authors for the
purpose of making the quantitative comparisons reported below.
The definition of yielding is somewhat arbitrary because Eqs. (4)
and (5) predict a gradual (rather than abrupt) transition from elastic
to plastic response.

The boundary conditions employed in the present work were

u(ri) = 0 or �r(ri) = 0 and �r(ro) = 0 (7)

The combination of the first and third of Eq. (7) (fixed inner edge,
free outer edge) will be referred to as BCI hereafter while the com-
bination of the second and third of Eq. (7) (free inner edge, free
outer edge) will be referred to as BCII. A solid disk with a free outer
edge can, of course, be represented by BCI with ri = 0. While the for-
mulation given above is correct for any thickness profile, all results
to be presented subsequently are based on the three parameter
thickness profile

h = h0

(
1 − nr

ri

)k

(8)

For convenience in subsequent numerical work it is helpful to
define the dimensionless quantities

R = r

ro
, Ri = ri

ro
, H = h

ro
, Y = E

E0
(9)

U = E0u

�ω2r3
o

, ˙r = �r

�ω2r2
o

, ˙� = ��

�ω2r2
o

(10)

It can then be shown that U, ˙r, and ˙� depend on only the
dimensionless angular velocity

 ̋ = ωro

(
�

�I

)1/2
, (11)

the dimensionless numbers M and S appearing in Eq. (4), and the
dimensionless numbers k and n appearing in Eq. (8).

Elastic compensation was  accomplished iteratively using the
dimensionless forms of Eqs. (3)–(7). At a given iteration the differ-
ential equation was  linearized about the result from the previous
iteration (previous  ̋ at the first iteration for a new ˝)  and
the resulting linear variable coefficient differential equation was
solved numerically, with iteration continuing until convergence
was achieved to sufficient accuracy. Then  ̋ was incremented and
the iterative process restarted. The calculation began with a small
value of  ̋ (to insure elastic behavior) and proceeded successively
to larger  ̋ values. The numerical solution of the linear variable
coefficient differential equation was  performed by dividing the
radial coordinate into N − 1 segments of equal length by N grid
points, representing the first and second derivatives appearing in
Eq. (3) by appropriate three point central difference quotients and
the first derivatives appearing in the second and third of Eq. (7)
by respective three point forward and backward difference quo-
tients, and solving the resulting set of N linear tri-diagonal algebraic
equations by the Thomas algorithm (Potter’s method). Verification
of the numerical method was carried out by comparing its pre-
dictions with closed form solutions for both constant and variable
thickness elastic discs reported by Timoshenko and Goodier (1951),
numerical solutions for variable thickness elastic disks presented
in Fig. 9a and c of Eraslan and Argeso (2002), and numerical solu-
tions for variable thickness elastic disks presented in Fig. 2a and c
of Eraslan and Orcan (2002). Excellent agreement was observed in
all cases. Several values of N were employed in the simulations and
it was found that grid independence was achieved for N = 1001 in
all cases.
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