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Ivo  Senjanović ∗,  Nikola  Vladimir,  Neven  Hadžić
University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića  5, 10000 Zagreb, Croatia
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a  b  s  t  r  a  c  t

The  basic  equations  of  the  Mindlin  theory  are  specified  as starting  point  for its  modification  in  which
total  deflection  and  rotations  are split  into  pure  bending  deflection  and  shear  deflection  with  bending
angles  of  rotation,  and in-plane  shear  angles.  The  equilibrium  equations  of  the  former  displacement  field
are  split  into  one  partial  differential  equation  for flexural  vibrations.  In the latter  case  two  differential
equations  for  in-plane  shear  vibrations  are  obtained,  which  are  similar  to the  well-known  membrane
equations.  Rectangular  shear  locking-free  finite  element  for flexural  vibrations  is developed.  For  in-plane
shear  vibrations  ordinary  membrane  finite  elements  can  be  used.  Application  of  the  modified  Mindlin
theory  is illustrated  in a case  of simply  supported  square  plate.  Problems  are  solved  analytically  and  by
FEM and  the  obtained  results  are  compared  with  the  relevant  ones  available  in  the  literature.
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1. Introduction

The first works on thick plate theory are those of Reissner and
Mindlin from 1945 and 1951, (Reissner, 1945) and (Mindlin, 1951),
respectively. This challenging problem has been a subject of inves-
tigation by many researchers, both mathematicians and engineers.
Very large number of concepts has been worked out during that
long period (Liew et al., 1995). Analytical and numerical methods
have been applied. When the finite element method (FEM) came to
use, it was also applied for thick plate static and dynamic analysis
(Hughes, 1987).

In the Mindlin theory shear deformations are taken into account,
and application of ordinary low-order finite element is not capa-
ble to reproduce the pure bending modes in the limit case of
thin plate. This shear locking problem arises due to inadequate
dependence among transverse deflection and two  rotations. In
order to overcome this problem, quite large number of proce-
dures has been developed in recent years. Most of them utilize a
mixed formulation, by linking plate deflection field to the angles
of rotations (Lee and Wong, 1982; Auricchio and Taylor, 1995;
Lovadina, 1998). These formulations are rather complex and time
consuming. Another method is the Assumed Natural Strain (ANS)
in which shear strains at discrete collocation points are determined
from the displacements and interpolated over the element sur-
face with specific shape functions (Hughes and Tezduyar, 1981;
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Bathe, 1996; Zienkiewicz and Taylor, 2000). The Discrete Shear
Gap method (DSG) is similar to the ANS since the course of cer-
tain strains is modified within the finite element (Bletzinger et al.,
2000). The lack of collocation points makes application of DSG inde-
pendent of the order and form of the finite elements as the main
difference from the ANS. The DSG method has been recently used
in combination with Edge–based Smoothed FE Method (ES-FEM)
(Nguyen-Xuan et al., 2010), as a particular meshless method (Liu
et al., 2009).

Motivated by the above state-of-the art an investigation of the
problem has been undertaken. The well-known Mindlin theory is
modified in such a way that independent total deflection and angles
of rotations are split into pure bending deflection and shear deflec-
tion, and bending rotations and in-plane shear angles, respectively,
based on the idea elaborated in (Senjanović  et al., 2013). Since shear
deflection and bending rotations depend on bending deflection,
Mindlin mathematical model with 3 DOFs is decomposed into sin-
gle DOF bending model and double DOF shear model. Following
the modified Mindlin theory shear locking-free finite element for-
mulation is given. Three numerical examples for thick plate with
different boundary conditions are analyzed and the results are com-
pared with those from relevant literature.

2. Basic equations of Mindlin plate theory

The Mindlin theory deals with plate deflection, w, and angles of
cross-section rotation  x and  y. The following relations between
bending moments, torsional moments and transverse shear forces,
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Fig. 1. Thick plate displacements; (a) total deflection and rotation w,  x; (b) pure bending deflection and rotation wb, ϕx; (c) transverse shear deflection ws and (d) in-plane
shear angle ϑx .
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is plate flexural rigidity and shear rigidity, respectively, h is plate
thickness, k is shear coefficient, E and G = E/(2(1 + �)) are Young’s
and shear modulus, respectively, while v is Poisson’s ratio. The
plate is loaded with transverse inertia load and distributed inertia
moments

q = −m̄ ∂
2w

∂t2
, mx = J

∂2 x
∂t2

, my = J
∂2 y
∂t2

, (3)

where m̄ = �h and J = �h3/12 is plate specific mass per unit area and
its moment of inertia, respectively and � is mass density. Equilib-
rium of moments about y and x axis and transverse forces leads to
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By substituting Eqs. (1) and (3) into (4) one arrives at three
differential equations of motion
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where �(·) is the Laplace differential operator. Eq. (5) generally
represent starting point for further development of Mindlin theory
and its variants.

3. Modification of Mindlin theory

The main idea is to split general displacements w,   x and
 y, Fig. 1a, into their constitutive parts, as shown in Fig. 1b–d.
Total deflection consists of bending deflection and contribution of
transverse shear, while angles of plate cross-section slope are a

result of angles of rotation, Fig. 1b, due to pure bending and shear
angles

w = wb + ws,  x = −∂wb
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+ ϑx,  y = −∂wb
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+  ϑy. (6)

By introducing (6) into Eq. (5) it is possible to separate variables
of two different displacement fields

∂

∂x

(
D

S
�wb − J

S

∂2wb
∂t2

+ ws

)

= D

S

[
∂2ϑx
∂x2

+ 1
2

(1 − �)
∂2ϑx
∂y2

+ 1
2

(1 + �)
∂2ϑy
∂x∂y

]
− ϑx − J

S

∂2ϑx
∂t2

,

(7)

∂

∂y

(
D

S
�wb − J

S

∂2wb
∂t2

+ ws

)

= D

S

[
∂2ϑy
∂y2

+ 1
2

(1 − �)
∂2ϑy
∂x2

+ 1
2

(1 + �)
∂2ϑx
∂x∂y

]
− ϑy − J

S

∂2ϑy
∂t2

,

(8)

�ws − m̄

S

∂2

∂t2
(wb + ws) = −

(
∂ϑx
∂x

+ ∂ϑy
∂y

)
. (9)

Eqs. (7) and (8) can be presented in the form
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= g1(ϑx, ϑy),
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= g2(ϑx, ϑy) (10)

and their integrals per x and y read F =
∫

g1dx + f(y, t) = G1 and
F =
∫

g2dy + f(x, t) = G2, respectively. That implies identity of func-
tions G1 and G2, which is not possible due to structure of g1 and
g2 in (7) and (8). The reasonable solution is that both functions g1
and g2 are set to zero. Consequently ∂F/∂x and ∂F/∂y are also zero
and their integrals F = f(y, t) and F = f(x, t) have to be the same, i.e.
f(y, t) = f(x, t) = f(t). Since f(t) represents rigid body motion, it can be
ignored in vibration analysis.

As a result of the above consideration, the following relation
from Eqs. (7) and (8) yields
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Furthermore, by substituting Eq. (11) into (9) one arrives at differ-
ential equation for flexural vibrations
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Once wb is determined, the total deflection reads, according to Eqs.
(6) and (11),
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