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a  b  s  t  r  a  c  t

Simulation  of mechanized  tunneling  and on-site  excavation  require  very  good  knowledge  of  the geome-
chanical  and  material  properties.  Identification  of the  material  must  be fast  and  continuously  performed
during  tunnel  excavation  for the  best  possible  strategies  for advancing  the  tunnel  boring  machine.  We
present  in  this  work  the  use  of  the  extended  Kalman  filter  (EKF)  for identification  of the inclined  fault
zone  ahead  of  the  face.  The  EKF  showed  fast  and  stable  convergence  of  the  model  parameters  under
study.  In  comparison  with  the  particle  swarm  optimization  technique  applied  to the  same  back  analysis
problem,  faster  convergence  of  the  identified  parameters  as well  as  high  robustness  with  respect  to  the
choice  of the  initial  parameter  values  have  been  observed.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The back analysis procedures require reliable and sufficient
measurement data, a robust numerical model and an efficient
method for the solution of the inverse (back analysis) prob-
lem (Gioda and Sakurai, 1987). However in situ measurements
are susceptible to uncertainties due to instrument inaccuracies,
environment and human handling. Furthermore, for geotechni-
cal problems, the back analysis employs direct approach based on
iterative solution of a forward problem by means of a numerical
approximation (e.g. finite element analysis) and therefore the exact
model response is basically unknown (Gioda and Sakurai, 1987;
Gioda and Locatelli, 1999; Schanz et al., 2006).

The Kalman filter method was developed by Rudolf E. Kalman
in early 1960s (Kalman, 1960). Since that time it has been widely
employed in signal processing, mechanical systems, etc. as a very
successful method for state estimation. Since late 1980s, some
applications of the Kalman filter method have also arisen in the
field of geotechnical engineering for parameter identification of
elastic and ideally elastoplastic material parameters (Murakami
and Hasegawa, 1988; Murakami, 1991; Hoshiya and Suto, 1993),
in situ stresses in rock mass (Yang et al., 2011). According to the
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categorization of back analysis methods introduced by Gioda and
Sakurai (1987), the Kalman filter belongs to the probabilistic back
analysis approach. In this work, we  present the use of the EKF to
estimate the location, the thickness, and the elastic modulus of the
fault zone ahead of the tunnel excavation face using a set of set-
tlement and horizontal displacement data at observation positions
around the tunnel. To test the efficiency of the method, we  use a
set of synthetic measurement data calculated by a finite element
model as measurement data. Afterwards, we  applied the Kalman
filter method to back analyse the parameters of interest.

The Kalman filter method is based on the recursive least squares
estimation method adapted to time updates and observation
updates of the mean state and its covariance, taking into account
uncertainties of system modeling and measurements (Kalman,
1960; Gelb, 1974). It starts from a priori estimate and utilizes a set
of observation data to calculate a posteriori estimate. The sequence
is repeated until convergence has been ascertained. One of the
main features of the Kalman filter method is that the estimation of
parameters at any time instant is accompanied by relevant covari-
ance matrices, which represent the uncertainty of the estimated
parameters, as well as of the process noise and observation noise.
Due to this property of the Kalman filter, it is classified as a sta-
tistical identification approach. Murakami (1991) has pointed out
that the Kalman filter and the Bayesian estimator are equivalent.
For the application of Bayes’ approach in parameter estimation of
geotechnical models the readers may refer to Cividini et al. (1983).

The Kalman filter is the best unbiased filter for state estimation
of linear systems. However, since formulations of the parame-
ter identification (or the so-called back analysis) mostly result in
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nonlinear systems, an adequate formulation of the Kalman filter
is required as well. In this paper, the extended Kalman filer (EKF),
which represents a version of the Kalman filter for nonlinear sys-
tems linearized around the current state, will be employed.

In the next section of this paper, the EKF for parameter iden-
tification problem will be formulated with focuses on calculation
of the sensitivity matrix and adjustment of the error covariance
matrix for obtaining fast convergence. After that, we present and
discuss the results of application of the EKF for identification of
an inclined fault zone ahead of the tunnel face during tunnel
excavation. Finally, we conclude the work and give remarks on
implementation and adjustment of the EKF for parameter identifi-
cation problems in geomechanics.

2. The extended Kalman filter (EKF)

A state-space formulation of a general mechanical system can
be represented for the problem of parameter identification in the
following form:

x(k + 1) = x(k) + w(k), (1a)

y(k) = h(x(k)) + v(k), (1b)

where components of the vector x are the model parameters that
require identification. For the parameter identification, the state
transition equation, Eq. (1a), is represented as stationary with addi-
tive noise w at imaginary time step tk in the identification process.
The formulation of the state space dynamic system representation
in discrete-time form, which is well known in the control system
theory:

x(k + 1) = �x(k) + �u(k) + w(k) (2)

is reformulated accordingly for a stationary estimation problem
with Kalman filter in order to obtain Eq. (1a), so that the state
matrix � remains equal to identity matrix, and no control input
u is employed. The elements of the state vector x become in
this formulation the parameters to be estimated, but their evolu-
tion throughout the estimation algorithm may  be considered as
a discrete-time stepwise change till final convergence to the real
value has been achieved, and therefore with respect to the num-
ber of iterations k they are “dynamically” changing in discrete time
steps. Therefore we refer to x as the state vector for the reason that
it represents the state of the parameters set in this employed recur-
sive estimation algorithm. The measurements, or observations,
required for the state estimation are related with the parameters
to be estimated by appropriate constitutive law, expressed in term
of the output equation in the state space formulation adopted in
the control systems representation. The choice of the type of mea-
surements depends on the particular geotechnical problem and the
available measurement tools. For more details on the measurement
(output) equation formulation readers are referred to Nestorović
and Nguyen (2013).

With respect to the parameter set represented by the state vec-
tor x, modeling data y can be obtained at the selected observation
positions through the use of numerical modeling function h(·) as
presented in Eq. (1b). The fact that the model responses are nonlin-
early related to the model parameters even when the geotechnical
problem is linear is given in Hoshiya and Suto (1993). Additive
uncertainty v associated with modeling function is to represent
the inaccuracies caused by numerical approximation that is used
to solve the forward problem. Both w and v are assumed to have
Gaussian distribution with zero means and covariance matrices Q
and R respectively. Covariance matrices Q and R are mathematically
described as

E[w(k)wT (k)] = Q; E[v(k)vT (k)] = R. (3)

In order to explain the recursive handling between time updates
and measurement updates of the Kalman filter we  introduce defini-
tion of a priori estimate, the estimate of the state before observation
data are available, and a posteriori estimate, the estimate of the state
after observation data are available. In mathematical expressions,
a priori state estimate x̂(k + 1|k) and its covariance matrix P(k + 1|k)
at time tk+1 are estimated as follows given the observation data up
to time tk:

x̂(k + 1|k) = E[x(k + 1)|y(1),  y(2), . . .,  y(k)],

P(k + 1|k) = E[{x(k + 1) − x̂(k + 1|k)}{x(k + 1) − x̂(k + 1|k)}T ].

Whenever observation data at time tk+1 are available, a poste-
riori estimate x̂(k + 1|k + 1) and its covariance matrix P(k + 1|k  + 1),
which should better represent the model under study, can be esti-
mated in this way:

x̂(k + 1|k + 1) = [x(k + 1)|y(1),  y(2), . . .,  y(k + 1)],

P(k + 1|k + 1) = E[{x(k + 1) − x̂(k + 1|k + 1)}{x(k + 1) − x̂(k + 1|k + 1)}T ].

The EKF estimates a posteriori mean and covariance based on the
recursive least squares. Initially, the EKF is assigned with the best a
priori knowledge of the considered model, which can be obtained
by in situ tests or laboratory experiments, as follows:

x̂(0|0) = E[x(0)],

P(0|0) = E[{x(0) − x̂(0|0)}{x(0) − x̂(0|0)}T ].
(4)

The initial state, which consists of a set of guessed model param-
eters, is chosen based on engineering experience or preliminary
examination of the structure. The closer the initial parameter val-
ues to the true ones are, the better initialization the EKF will be
achieved, and therefore the faster convergence. In case of a com-
plete lack of knowledge about the model parameters, the initial
covariance matrix is assigned arbitrarily large due to a lack of con-
fidence in the initial choice of the state vector.

Before observation data of the model are available, the EKF prop-
agates the mean and error covariance of the state through time. The
time update equations of the mean and covariance of the state are
calculated as

x̂(k + 1|k) = x̂(k|k),

P(k + 1|k) = IP(k|k)IT + Q,
(5)

where I is the state transition matrix which is identity because we
formulate the state transition Eq. (1a) as stationary.

As soon as the observation data are available, measurement
update of the state and covariance can be performed following the
below equations:

K(k + 1) = P(k + 1|k)HT (k + 1){H(k + 1)P(k  + 1|k)HT (k + 1) + R}−1
,

(6a)

x̂(k + 1|k + 1) = x̂(k + 1|k) + K(k + 1){yexp − h(x̂(k + 1|k))}, (6b)

P(k + 1|k + 1) = P(k + 1|k) − K(k + 1)H(k + 1)P(k + 1|k), (6c)

where H, which is termed sensitivity matrix, is composed of the
derivatives of observation data with respect to the state variables.
H cannot be analytically calculated in our problems because the
observation (modeling) equation is not explicitly known. Instead,
a numerical approximation of H will be performed using forward
results from forward simulation (finite element analysis) as a black-
box function h(x),

H(k + 1) = ∂h(x(k + 1))
∂x(k + 1)

∣
∣
x(k+1)=x̂(k+1|k) (7)
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