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a  b  s  t  r  a  c  t

Energy  harvesting  of monostable  Duffing  oscillator  with  piezoelectric  coupling  under  Gaussian  white
noise  excitation  is  investigated.  Based  on the  Fokker–Plank–Kolmogorov  equation  of  piezoelectric  cou-
pling  systems,  the  statistical  moments  of the response  are  derived  from  the  Van  Kampen  expansion.  The
effects of  the spectral  density  of the  random  excitation  and  the  coefficient  of  cubic  nonlinearity  on the
expected  response  moments  are  analyzed.  Some  numerical  examples  are  presented  to demonstrate  the
effects  of  excitation  spectral  density,  coefficient  of  cubic  nonlinearity  and  initial  conditions  on  the  output
voltage.
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1. Introduction

Energy harvesting from ambient waste energy for the purpose
of running low-powered electronics has emerged as a prominent
research area and continues to grow at rapid pace. The area of
vibration-based energy harvesting encompasses mechanics, mate-
rials science, and electrical circuitry. One of the most studied areas
is the use of the piezoelectric effect to convert ambient vibration
into useful electrical energy.

Piezoelectric energy harvesting can be configured in many dif-
ferent ways that prove useful in power harvesting applications. The
rapid growth of research being performed in the field of piezoelec-
tric energy harvesting has resulted in significant improvements to
various energy scavenging techniques. There are several excellent
and comprehensive survey papers, notably Sodano et al. (2004),
Anton and Sodano (2007), Priya (2007), Zhu et al. (2010), review-
ing the state of the art in different time phases of investigations
related to piezoelectric energy harvesting. Recently, there are two
monographs have been published to present the current state of
knowledge in energy harvesting technologies (Priya and Inman,
2009) and piezoelectric energy harvesting (Erturk and Inman,
2011).
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Concentrating on discrete and continuous systems at the res-
onance under a harmonic excitation, most works on energy
harvesting take the deterministic approaches. However, uncer-
tainty is inherent in most real-world systems, and the uncertainty
may  seriously change the behavior of vibration. There are some
researches via stochastic approaches. Establishing the closed-form
expressions for output power, proof mass, displacement, and opti-
mal  load for linear energy harvesters driven by broadband random
vibrations, Halvorsen (2008) demonstrated that the output power
has a different optimum for broadband excitations from that for
sinusoidal excitations. McInnes et al. (2008) employed the stochas-
tic resonance to enhance vibration energy harvesting and revealed
numerically the significant enhancement without any periodic
forcing. Introducing the nonlinearity resulted from magnetic inter-
actions Cottone et al. (2009) found numerically and experimentally
the nonlinearity improve the vibration-based energy harvesters.
Based on a linear model of the piezoelectric material along the d-
33 direction, Adhikari et al. (2009) determined the mean power
acquired from a piezoelectric vibration-based energy harvesting
circuit subjected to stationary Gaussian white noise. Calculating the
response of uni-modal electromagnetic Duffing-type harvesters to
Gaussian white and colored excitations Daqaq (2010) found that,
under white excitations, nonlinearities in the damping and the iner-
tia but not the stiffness enhance the expected value of the output
power, and, under colored excitations, the nonlinearity decreases
the expected value of the output power regardless of the bandwidth
or the center frequency of the excitation. Proposing transduction of
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a bistable inductive generator driven by white and exponentially
correlated Gaussian noise, Daqaq (2011) derived an approximate
expression for the mean power under exponentially correlated
noise and demonstrated the existence of an optimal potential shape
maximizing the output power.

It should be remarked that there are different types of elec-
trical circuit equations used in piezoelectric energy harvesting.
duToit et al. (2005) first proposed a coupled electromechanical
equation for lumped-parameter piezoelectric energy harvesters.
As the motion equation of the harvester and its electromechan-
ical equation cannot be directly decoupled, the system is with
1.5 degrees-of-freedom. This type of the electrical circuit equa-
tion has been widely used (Erturk and Inman, 2011; Halvorsen,
2008; McInnes et al., 2008; Cottone et al., 2009). Daqaq (2010,
2011) and Green et al. (2012) introduced an uncoupled electrical
circuit equation, the electromechanical equation can be converted
into first-order differential equation. Therefore, the system is with
single-degree-of-freedom. Triplett and Quinn (2009) considered a
nonlinear piezoelectric coupling relationship on the performance of
a vibration-based energy harvester. Adhikari et al. (2009) reported
an electrical circuit equation with an inductor, where the electrical
equation is second-order differential equation. Thus, the system is
with 2 degrees-of-freedom. This paper investigated the lumped-
parameter model of a piezoelectric energy harvester which is
essentially a 1.5 degree-of-freedom system. So far, to the authors’
best knowledge, there are no investigations on the FPK equations
of monostable Duffing oscillator with 1.5 degree-of-freedom sys-
tem. To address the lacks of research in the aspect, the present work
treats the monostable Duffing oscillator with piezoelectric coupling
under Gaussian white noise excitation.

The paper is organized as follows. In Section 2, the
Fokker–Plank–Kolmogorov equation of piezoelectric coupling sys-
tems is derived from the equations of piezoelectric coupling under
Gaussian white noise excitation. The Van Kampen expansion is
applied to determine the statistical moments of the response.
The effects of the spectral density of the random excitation and
the coefficient of cubic nonlinearity on the expected response
moments are analyzed. In Section 3, numerical simulations are pre-
sented to demonstrate the effects of the bandwidth of excitation
amplitude, the coefficient of cubic nonlinearity and initial condi-
tions on output voltage. Section 4 ends the paper with concluding
remarks.

2. The response moments to Gaussian white excitation

The lumped-parameter equations of a piezoelectric energy har-
vester with cubic nonlinearity in the displacement term under
harmonic excitation have been given by Erturk and Inman
(2011). However, here we consider the case of stochastic exci-
tation rather than harmonic excitation. The lumped-parameter
equations of a piezoelectric energy harvester with cubic non-
linearity under Gaussian white noise excitation can be given
as

ẍ + 2ε�ω0ẋ + ω2
0x + ε˛x3 − ε�� = ε�(t) (1)

�̇ + �� + 	ẋ = 0 (2)

where x is the displacement response, � is the dimensionless volt-
age response across the external electrical load, ω0 is the undamped
fundamental natural frequency, � is the dimensionless piezoelec-
tric coupling term in the mechanical equation, � is the reciprocal of
the dimensionless time constant of the resistive–capacitive circuit,
and 	 is the dimensionless piezoelectric coupling term in the elec-
trical equation. Furthermore, ε is a small bookkeeping parameter

and � is a mechanical damping term, �(t) is Gaussian white noise
process with zero mean and autocorrelation function.〈

�(t)�(t + 
)
〉

= 2�S0ı(
) (3)

where 〈 〉 denotes the expected value, S0 is the spectral density of
the excitation, and ı is the dirac-delta function.

Eqs. (1) and (2) can be converted into Itô differential equations

dx1 = x2dt

dx2 = −(2ε�ω0x2 + ω2
0x1 + ε˛x3

1 − ε�x3)dt + ε
√

2SdB(t)
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(4)

where x1 = x, x2 = ẋ,  x3 = �, S = �S0, B(t) is a Brownian motion
process. The joint PDF, P(x1, x2, x3, t), of the response can be obtained
by solving the FPK equation which can be expressed for system as
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subjected to the boundary conditions P(− ∞ , t) = P(+ ∞ , t) = 0. Even
in the steady-state case, an exact solution of Eq. (5) is not attainable.
For small nonlinearities and mean square values of the xi’s, one
can use the Van Kampen expansion (Rodriguez and Kampen, 1976)
to obtain an approximate solution of Eq. (5). In the Van Kampen
expansion, which was introduced in the context of some statistical
physics problem, the variables are expanded in a successive powers
of the excitation’s spectral density S. That is,

x1 = S1/21 + O(S3/2)

x2 = S1/22 + O(S3/2)

x3 = S1/23 + O(S3/2)

(6)

The reason for expanding xi in orders of S1/2 stems from our pre-
vious knowledge that mean square value of xi or

〈
x2

i

〉
, which is a

measure of the response amplitude, will turn out to be proportional
to S. With this expansion, the PDF becomes a function of the new
variables i as

P(x1, x2, x3, t) = P(S1/21, S1/22, S1/23, t) = G(1, 2, 3, t) (7)

In terms of the new PDF, the FPK equation becomes
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subjected to the boundary conditions G(− ∞ , t) = G(+ ∞ , t) = 0. The
equations governing the response statistics (statistical moments)
will be established. For a general function �(1, 2, 3), the response
statistics

〈
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can be obtained by multiplying both sides of Eq. (8)
by � and integrating by parts over the entire space; that is
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