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a  b  s  t  r  a  c  t

The  transient  probability  densities  of  nonlinear  multi-degree-of-freedom  systems  with  time  delay  are
investigated.  The  system  is  firstly  approximated  by the  corresponding  non-time-delay  system  through
appropriate  relations  between  the  current  states  and  the  delay  states.  Stochastic  averaging  is  adopted
to  reduce  the  dimension  of the  equivalent  system,  and  the  corresponding  Fokker–Planck–Kolmogorov
equation  with  regard  to  transient  probability  density  is  obtained.  This  equation  is  solved  by  expressing  the
transient  probability  density  as  multiple  series  in  terms  of  a set  of  properly  state-dependent  orthogonal
basis  functions  with  time-dependent  coefficients.  Two  examples  are  given  to illustrate  the  accuracy  and
efficacy of  the  proposed  procedure.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Realistic structures subject to random loads are generally modeled as stochastically excited nonlinear multi-degree-of-freedom (MDOF)
systems. In recent decades, the responses of nonlinear stochastic MDOF systems have been extensively studied and several procedures, such
as the Fokker–Planck–Kolmogorov (FPK) equation, moment closure, perturbation, equivalent linearization method, equivalent nonlinear
system method and stochastic averaging have been developed to evaluate the system responses (Lin and Cai, 2004; Zhu, 2006).

The probability density of stochastic responses is the whole probabilistic description and all the information of stochastic responses can
be expressed through it. Thus, the evaluation of probability density is the ultimate target to determine the system responses. The existing
methods to predict the approximate stationary probability density functions have been greatly developed (Cai et al., 1992; Hasofer and
Grigoriu, 1995; Bernard and Wu,  1998; Bellizzi and Bouc, 1999; To, 2005; Zhu, 2006; Crandall, 2006; Floris, 2010) and the exact stationary
probability densities of several classes of nonlinear systems subject to Gaussian white noise excitations have been also studied (Soize, 1994;
Wang and Zhang, 2000; Zhu, 2006). From these obtained stationary probability densities, only the information of stationary responses can
be evaluated. The determination of transient probability density, however, is quite challenging due to its dependence on time. Most of the
existing works are dedicated to the direct evaluation of the first and second moments, certainly higher order moments can be obtained
by some methods such as the response moment approach. The progresses within this theme are so far predominantly based on the
equivalent linearization method and the Monte Carlo simulation. Ohtori and Spencer (2002) obtained a recursive expression for the mean
and covariance responses of MDOF systems by using the linear transformation techniques and a semi-implicit integration algorithm. Saha
and Roy (2007) proposed the Girsanov linearization method for stochastically driven nonlinear oscillators. To our best knowledge, the
results on the evaluation of transient probability densities of nonlinear MDOF systems are quite few (Jin and Huang, 2010).

The control of MDOF systems is an active research area in structural and control engineering. The time delay of the control forces,
however, is unavoidable due to the time consumption of sensors, processor and actuators. Time delay will deteriorate the control per-
formance and may  induce the system instability. Many researchers have studied the responses of deterministic systems with time delay
(Hu and Wang, 2002). The evolutions of mean values and mean square values of the dynamic responses of time-delayed systems under
stochastic excitation have been also studied (Di Paola and Pirrotta, 2001; Elbeyli et al., 2005). Guillouzic et al. (1999) obtained the steady-
state probability density of stochastic delay differential equations by using a small-delay approximation. Liu and Zhu (2007) obtained the
approximate stationary probability density of system response of quasi-integrable Hamiltonian systems with delayed feedback control by
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using the stochastic averaging method. Transient responses of time-delay MDOF systems are important due to the effects of time delay on
system stability. Unfortunately, very few works on transient probability densities of time-delay MDOF systems have been considered.

In the present paper, transient probability densities of nonlinear MDOF systems with time delay subject to stochastic external and/or
parametric excitations are investigated. The time-delay systems are appropriately replaced by the corresponding non-time-delay systems.
By using the stochastic averaging procedure based on the generalized harmonic functions, FPK equation governing the transient probability
densities for amplitude responses is obtained. Based on the similar procedures proposed by Spanos et al. (2007),  the transient probability
density is expressed as a multiple series expansion in terms of a set of properly state-dependent basis functions with time-dependent
coefficients, which can be solved by a set of first-order equations by the Galerkin method. The transient probability densities for state-
space response can also be obtained from that for amplitude response. Two examples are given to illustrate the accuracy and efficacy of
the proposed procedure.

2. Model of MDOF systems with time delay

Consider a nonlinear MDOF system subject to stochastic external and/or parametric excitations. The equations of motion of the system
are as follows:

Ẍi + εcij(X, Ẋ)Ẋj + gi(Xi) + εZi(Xi�, Ẋi�) = ε1/2fik(X, Ẋ)Wk(t) i, j = 1, . . . , n; k = 1, . . . , m (1)

where X = [X1, . . .,  Xn]T and Ẋ = [Ẋ1, . . . , Ẋn]
T

are generalized displacements and velocities, respectively, which are zeros as t < 0, ε a
small positive parameter, cij(X, Ẋ) the nonlinear damping coefficients, gi(Xi) the uncoupled stiffnesses, which are odd functions of the
generalized displacements Xi, i.e., gi(− Xi) = − gi(Xi), εZi(Xi�, Ẋi�)(Xi� = Xi(t − �), Ẋi� = Ẋi(t − �)) the time-delay terms, which are delayed
feedback control forces in control engineering and they vanish as t − � < 0, and usually chosen as polynomial of Xi� and Ẋi� , ε1/2fik(X, Ẋ)
the magnitudes of external and/or parametric excitations, assumed as polynomial of X and Ẋ, and Wk(t) the independent Gaussian white
noises with intensities 2Dkk. For simplicity, it is assumed that for each degree of freedom (also called subsystem) in system (1), only one
term of external excitation is considered, which is described as ε1/2fili Wli

(t) (li ∈ {1, . . .,  m}) where fili is a constant. The Einstein notation

is used in cij(X, Ẋ)Ẋj and fik(X, Ẋ)Wk(t) of Eq. (1).  In the present paper, only the case of non-internal resonance is studied.
System (1) can be simplified to a MDOF Hamiltonian system as ε = 0, which has the form of

ẍi + gi(xi) = 0 i = 1, . . . , n (2)

The first integrals of system (2) is

Hi = ẋ2
i

2
+ Ui(xi) i = 1, . . . , n (3)

in which Ui(xi) =
∫ xi

0
g(ui)dui are the potential energies.

Supposing that the solutions to system (2) periodically surround the origin equilibrium point respectively, and they can be expressed
as (Xu and Chung, 1994):

xi(t) = ai cos �i(t), ẋi(t) = −aivi(ai, �i) cos �i(t), �i(t) = �i(t) + ϕi(t) i = 1, . . . , n (4)

where ai are the instantaneous amplitudes and

vi(ai, �i) = d�i

dt
=
√

2[Ui(ai) − U(ai cos �i)]

a2
i

sin2 �i

(5)

are the instantaneous frequencies, and the averaged frequencies can be obtained as:

ωai
(ai) = 2�∫ 2�

0
v−1

i
(ai, �i)d�i

(6)

By using Hi = Ui(ai), the above averaged frequencies also have the expressions of

ωHi
(Hi) = ωai

(ai)|ai=U−1
i

(Hi)
(7)

in which U−1
i

(Hi) are the inverse functions of Hi = Ui(ai).
When ε is small, the following approximation can be obtained (Liu and Zhu, 2007):

Xi(t − �) ≈ Xi(t) cos ωai
� − Ẋi(t) sin ωai

�

ωai

, Ẋi(t − �) ≈ Ẋi(t) cos ωai
� + Xi(t)ωai

sin ωai
� (8)

Based on Eq. (8),  the time-delay terms Zi(Xi�, Ẋi�) can be approximately replaced by Zi(Xi�, Ẋi�) ≈ Z1i(Xi, �) + Z2i(Xi, Ẋi, �)Ẋi. Thus, system
(1) can be rewritten as:

Ẍi + εcijẊj + εZ2iẊi + gi(Xi) + εZ1i = ε1/2fik(X, Ẋ)Wk(t) i, j = 1, . . . , n; k = 1, . . . , m (9)

It should be pointed out that the systems considered in this paper are similar to those in Liu and Zhu (2007).  In the present paper, the
transient response is studied, while in Liu and Zhu (2007),  only the stationary response is calculated, which is a special case of the present
study.
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