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a  b  s  t  r  a  c  t

The  problem  of  a mode  I  crack  in  nanomaterials  under  a remote  mechanical  load  is  investigated.  The  effect
of  the  residual  surface  stress  on  the  crack  surface  is considered  and  the  solutions  to  the crack  opening
displacement  (COD)  and  the  stress  intensity  factor  (KI) are  obtained.  The  results  show  that  the  surface
effect  on  the  crack  deformation  and  crack  tip field  are prominent  at nanoscale.  Moreover,  COD  and  KI are
influenced  by  the  residual  surface  stress  not  only  on  the  surface  near  the  crack  tip  region  but  also  on  the
entire  crack  surface.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

With increasing applications of micro-/nanoscale materials
and structures, such as nanowires (Wu,  2006), nanosprings and
nanorings, strength and reliability of these advanced materials
and devices become critical. One fundamental and basic issue in
understanding the failure behavior of engineering materials and
structures is to analyze the deformation and stress field at the crack
tip. When the characteristic sizes of materials and structures shrink
to microns or nanometers, owing to the large surface–volume ratio,
surface effects often play a crucial role in their mechanical behav-
ior (Miri et al., 2011; Wang and Feng, 2009). To explain the effect
of surface in solids, Gurtin and Murdoch (1975) and Gurtin et al.
(1998) developed a continuum mechanics model of surface elas-
ticity, which recently has been adopted to explore the features of
mechanical deformations at nanoscale by incorporating the effects
of surface/interface energy (Dingreville et al., 2005; Goldstein et al.,
2010; Jin and Carmen, 2008; Liu et al., 2011; Park, 2009; Sharma
et al., 2003). For instance, the surface effects on the effective
modulus of elastic composites with dilute spherical nanocavities
was considered (Yang, 2004) and static and dynamic response of
nanoscale beams incorporating surface energy was explored (Liu
and Rajapakse, 2010).

The classical fracture mechanics, which neglects the effect of
residual surface stress on the fracture of the materials, has been
well developed. For nanosized crack problem, the influence of sur-
face stress on the crack surface is not well understood. Since the
propagation of cracks in inherent have relation with surface energy,
there are some recent work that considered surface influence of
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surface stress on the stress fields in bodies containing cracks, which
may be regarded as asymptotic cases of voids. Using the theory of
surface elasticity and analyzing an elliptic void, Wu  (1999) stud-
ied the effect of constant surface stresses on the configurational
equilibrium of voids and cracks. Wang et al. (2008) investigated
the influences of surface energy on the stress distributions near
a blunt crack tip for Mode I and Mode III cracks by using a local
analysis method. Buehler et al. (2003) and Buehler and Gao (2006)
investigated the dynamical fracture instabilities due to local hyper-
elasticity at crack tip by adopting massively parallel atomistic
simulations. And after that, as all the above analytical solutions
are valid only in a very small region above the crack tip, a numer-
ical study about surface effects on mode-1 crack tip fields is given
by Fu et al. (2010).  For a mode-III crack, Kim et al. (2010) calcu-
lated the full field solution by using the complex variable method.
At small length scales, Huang et al. (2009) performed an atomistic
study to characterize the formation and extension of nano-sized
cracks. Using atomistic reaction pathway calculations, Terdalkar
et al. (2010) studied nanoscale fracture in grapheme. The analy-
sis of Terdalkar et al. (2010) identify a kinetically favorable fracture
path that features an alternating sequence of bond rotation and
bond breaking. Using atomistic and multiscale simulations, Zhang
et al. (2005) explored the fracture of defected carbon nanotubes.

However, the studies of surface effect, especially the residual
surface stress effect on the fracture, are far from enough. In most
previous studies (Wu,  1999; Wang et al., 2008), only the surface
stress in the vicinity of the crack tip is considered. Since the crack
deformation and stress intensity factor all have strong connec-
tion with the surface stress acting on the whole surface of the
crack, it is not sufficient to consider only the surface stress near
the crack tip region. Thus in the present paper, we considered the
residual surface effect on the crack tip fields of a mode-I crack
problem by incorporating the surface effect on the whole crack
surface. The results show that the classical continuum mechanics
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Fig. 1. An infinite medium with a through-thickness crack of length 2a.

considerably overestimates the fracture mechanics parameters
such as the crack opening displacement and the crack tip stress
intensity factor. Further more, COD and KI are influenced by the
residual surface stress not only on the surface near the crack tip
region but also on the entire crack surface. Such observation is con-
siderably different from the previous work that only considered the
surface effect in the vicinity of crack tip.

2. Basic equations

To begin with, the basic equations of surface elasticity theory
were given by Gurtin and Murdoch (1975) and Gurtin et al. (1998).
In Gurtin’s sense (1998),  a surface is regarded as an elastic but
negligibly thin membrane and has the properties that is adhered
to the underlying bulk material without slipping and has elastic
constants different from the bulk. The equilibrium and constitu-
tive equations in the bulk of the material are the same as those in
the classical theory of elasticity, but the presence of surface stress
gives rise to a nonclassical boundary condition. Without consid-
ering the body forces, the equilibrium equations and the isotropic
constitutive relations in the bulk read �ij,j = 0, �ij = 2�εij + �εkkıij, i,
j = 1, 2, where � and � are material constants of the bulk, �ij and
εij are the components of stress and strain tensors, respectively.
Assume that the surface is ideally adhered to the bulk. Then the
equilibrium conditions on the surface are written as t˛ + �s

ˇ˛,ˇ
= 0,

�ijninj = �s
˛ˇ

�˛ˇ, where ni denotes the outward normal unit vec-
tor to the surface, t˛ is the negative of the tangential component
of the tractions ti = �ijnj along the ˛i direction on the surface, and
�˛ˇ is the surface curvature tensor. According to Gibbs (1906) and
Cammarata (1994) the surface stress tensor �s

˛ˇ
is related to the

surface energy density � as �s
˛ˇ

= �ı˛ˇ + ∂�/∂εs
˛ˇ

, where εs
˛ˇ

is the
surface strain tensor.

3. Residual surface stress in mode-I crack problem

Now we analyze the plane problem of the infinite medium
shown in Fig. 1. It is assumed that all the field variables are func-
tions of x and y only, and the half crack length is denoted by a.
Let the medium be loaded by a remote uniform normal stress �∞
along the y direction. Here, we investigate a symmetric problem

for mode-I crack. In this case, the surface stress along the crack sur-
face would reduced to the one-dimensional and linear form, that
is �s = 	0 + Esε, where 	0 is the residual surface tension when the
bulk is under unstrained, and Es is the surface Young’s modulus. If
the change of the atomic spacing in deformation is infinitesimal,
compared with the contribution of 	0, the effect of the component
of Esε is negligibly small in most cases (Ou et al., 2008; Wang et al.,
2006). Thus the surface stress on the crack surface can be expressed
by residual surface stress 	0 as shown in Fig. 1, and the direction
of 	0 is tangent to the crack surface. The surface stresses are given
by residual surface stress 	0 using the force balance normal to the
bulk-surface interface in the deformed configuration from Fig. 1
and can be expressed by 	0�, where � is the surface curvature ten-
sor and no denote the unit normal vector at any point o on the crack
surface. Thus the residual surface stress 	0 can generate a load per-
pendicular to the direction of 	0. Therefore the load along the y-axis
is 	0�ny, where ny is the directional cosine of the vector normal to
the crack surface.

Note that � and ny depend on the crack opening. Thus, the load
	0�ny generated by the residual surface stress 	0 at the crack is
related to the variable x. According to the method of solving the
crack problem subjected to dynamic loading (Wang et al., 2000;
Erdogan and Gupta, 1972), we introduce a dislocation density func-
tion 
(x) = 2∂V(x, 0)/∂x, where V is the crack face displacement along
the y-direction. The crack opening displacement (COD) is the max-
imum opening of the crack, which can be expressed as COD = 2V(0,
0). We  can also deduct that the radius of crack surface curvature
� and the directional cosine for the normal to the crack surface ny

can be expressed by 
 as

� = 1/� = 2(1 + 
2/4)
3/2


′ (1)

and

ny = 1√
1 + 
2/4

(2)

According to singular integral equation method (Wang et al.,
2000; Erdogan and Gupta, 1972), a relation between the applied
loadings �∞ and the dislocation density function 
(r) was  given on
the y = 0 planes. In the current case, considering the contribution
of the load generated by the residual surface stress 	0, the rela-
tion between the applied loadings �∞ and the dislocation density
function 
(r) can be rewritten as:

�yy(x, 0) = E

2(1 − �2)
× 1

2


∫ a

−a


(r)
(r − x)

dr + �∞ + 	0ny(x)
�(x)

(3)

where E and � are, respectively, the Young’s modulus and Poisson’s
ratio of the materials. Eq. (3) gives the stress inside the crack as well
as outside of the crack. In the case of inside crack, −a ≤ x ≤ a, the
crack face is stress free such that �yy(x, 0) = 0. Then Eq. (4) becomes
a singular integral equation which has Cauchy-type integral kernel
1/(r − x). Let r̄ = r/a and x̄ = x/a, under the theory of the integral
equation (Muskhelishvili, 1953), 
(r) has the form of solution


(ar̄) =
∞∑

m=1

CmTm(r̄)√
1 − r̄2

, −1 ≤ r̄ ≤ 1 (4)

where Tm(r/a) = cos(mar cos(r/a)) is the Chebyshev polynomials of
the first kind, and Cm are unknown constants to be determined. To
solve Eq. (3),  we  can truncated the first M terms of Eq. (4),  that is
m = 1, ..., M.  Substituting the first M terms of Eq. (4) into Eq. (3) and
using the well-known integral

1



∫ 1

−1

Tm(r̄)

(r̄ − x̄)
√

1 − r̄2
dr̄ = Um−1(x̄) (5)
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