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a  b  s  t  r  a  c  t

In  this  paper,  the geometrically  nonlinear  free  and  forced  oscillations  of simply  supported  single walled
carbon  nanotubes  (SWCNTs)  are  analytically  investigated  on  the  basis  of the  Euler–Bernoulli  beam  theory.
The nonlinear  frequencies  of SWCNTs  with  initial  lateral  displacement  are  discussed.  Equations  have
been  solved  using  an  exact  method  for free  vibration  and  multiple  times  scales  (MTS)  method  for  forced
vibration  and  some  analytical  relations  have  been  obtained  for  natural  frequency  of  oscillations.  The
numerical  results  reveal  that  the  nonlinear  free  and  forced  vibration  of nanotubes  is  effected  significantly
by  both  surrounding  elastic  medium  and  CNT aspect  ratio.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, miniaturized products have become important
due to their ability to enhance the quality of many aspects of life.
Carbon nanotubes (CNTs) are components of nanoscale dimensions
that simultaneously present novel physical, mechanical and electri-
cal properties. These properties have made them potentially useful
for many applications in nanotechnology, electronics, optics and
other fields of materials science. As a result, progressive research
activities regarding CNTs have been ongoing in recent years. The
use of CNTs in biological and biomedical applications creates hope
for effective solutions to incurable illnesses, for instance. Sinha and
Yeow (2005) have reported applications where CNTs can be used
as diagnostic tools and devices and auxiliary tools in biopharma-
ceutics as well as implantable materials and devices.

There is a wide range of applications in which the vibrational
characteristics of CNTs are significant. In applications such as oscil-
lators, charge detectors, field emission devices, vibration sensors,
and electromechanical resonators, oscillation frequencies are key
properties. Hence, it is important to develop accurate theoreti-
cal models for evaluation of natural frequencies and mode shapes
of CNTs. There are already exploratory studies on the contin-
uum models for vibration of carbon nanotubes (CNTs) or similar
micro or nanobeam like elements (Wang et al., 2006a,b; Rafiee
and Nezamabadi, 2011; Shooshtari and Rafiee, 2011; Wang and
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Varadan, 2006; Lu et al., 2007). A review related to the importance
and modeling of vibration behavior of various nanostructures can
be found in Gibson’s et al. (2007).  In these works it has been sug-
gested that nonlocal elasticity theory developed by Eringen (1983,
2002) should be used in the continuum models for accurate pre-
diction of vibration behaviors. This is due to the scale effect of the
nanostructures. Importance of accurate prediction of nanostruc-
tures’ vibration characteristics has been discussed by Gibson et al.
(2007). Kwon et al. (2005) presented a direct method for evalu-
ating the natural frequencies and mode shapes of various CNTs.
In that effort, the Tersoff–Brenner interatomic potential describ-
ing the interactions between carbon atoms was utilized for the
development of the stiffness matrix while the atomic masses were
used for the construction of the mass matrix. Liu et al. (2004) have
developed an order N, atomic-scale finite element method that can
handle discrete atoms and account for the multi-body interactions
among atoms. The nature of this method enables the study of large
scale problems.

Up until now, most of the investigations carried out on the
vibration of CNTs have been restricted to the linear regime. These
nanostructured materials can undergo large deformations within
the elastic limit and their nonlinear analysis is clearly essential.
Developing powerful predictive models to study various aspects of
the vibrational behavior of CNTs is of high importance. Generally,
owing to the complexities of nonlinear analysis, there has been no
single overarching principle that governs the solution of nonlin-
ear problems. There are, however, a number of general approaches
that can be adopted for the solution of a certain class of non-
linear problems. Recently, Fu et al. (2006) studied the nonlinear
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Fig. 1. Geometric representation of an embedded carbon nanotube.

vibrations of embedded nanotubes, with the inclusion of inter-
tube radial displacements and the internal vdW forces, using the
incremental harmonic balanced method (IHBM). They used the
Euler–Bernoulli uncoupled beam theory on which the theoreti-
cal formulation is based. In that work, single-walled nanotubes
(SWNTs) and double-walled nanotubes (DWNTs) were consid-
ered for the study. In a related work, Ansari and his co-workers
(2010) investigated the nonlinear vibrations of single-, double- and
triple-walled nanotubes (TWNTs) on the basis of the uncoupled
Euler–Bernoulli equation using homotopy perturbation method
(HPM). The present work can be regarded as an extension of
the authors’ previous work on nonlinear vibrational response of
MWNTs using the variational iteration method (VIM). Joshi et al.
(2010a) investigated dynamic analysis of carbon nanotube with
surface deviation along its axis. The type of carbon nanotube used
in their analysis is a single-walled carbon nanotube that is dou-
bly clamped at a source and a drain and this type of nanotube is
used to represent a single mode resonator. In another work done
by Joshi and his coworkers (2010b), the simulation of the mechan-
ical responses of individual carbon nanotubes treated as thin shells
with thickness has been done using FEM.

Beyond the theoretical, molecular mechanics and continuum
methods experimental techniques are also proposed in the lit-
erature in order to evaluate the oscillatory frequencies of CNTs.
However, detection of mechanical vibrations of nanotubes is con-
sidered a very difficult task. Garcia-Sanchez et al. (Garcia-Sanchez
et al., 2007) have recently presented a mechanical method for
CNT resonator vibration detection that uses a novel scanning force
microscopy method. Verification of their results was done via
comparisons with results obtained using elastic beam theory and
assuming that Young’s modulus is equal to 1TPa. The compari-
son between experimental and theoretical methods pre-require
the complete definition of all parameters such as the length of the
vibrating nanotube, the nanotube type and other conditions that
influence the vibrational behavior such as the slack phenomenon,
nature of the support condition, environmental conditions and
other influences.

To the best of the authors the primary resonance of SWCNTs has
not been reported. In this paper, based on the continuum mechanics
and an elastic beam model, the nonlinear free and forced frequency
analysis of SWCNTs considering intertube radial displacement and
the related internal degrees of freedom rested on elastic foundation
is investigated.

2. Formulation

The system under consideration is a simply supported CNT of
length l, mass density �, cross-sectional area A and cross-sectional
moment I, embedded in an elastic medium as shown in Fig. 1.
Assume that w(x, t) is displacement corresponding to the vertical
direction, in terms of the spacial coordinate x and the time variable
t.

The nonlinear equation of motion of CNTs is given by
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in which m = �A is the CNT mass of per unit length and q(x, t) is
the interaction pressure per unit axial length between the outer-
most tube and the surrounding medium, which can be described by
the Winkler-like model (Lanir and Fung, 1972; Hahn and Williams,
1984), and

q = −kw (2)

where the negative sign indicates that the pressure p is opposite
to the deflection of the outmost tube, and k is a constant deter-
mined by the material constants of the surrounding elastic medium.
Substituting Eq. (2) into

Eq. (1),  that gives
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3. Free vibration

Assume that the nanotube is simply supported at the two ends.
So, the unknown function w(x, t) may  be given as

w(x, t) = �(t) sin
�x

l
(4)

It satisfies the boundary condition: x = 0, l: w = 0, M = 0, in which M
is the stress couple. Defining the following quantities
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and substituting Eq. (4) into Eq. (3),  the nonlinear differential equa-
tion for the time function �(t) can be obtained as follows:
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By introducing the following quantities,
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one may  obtain the following nondimensional nonlinear differen-
tial equation of the system
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The initial conditions considered in the current work are:

�(l/2, 0) = �max,
∂�(l/2,  0)

∂t
= 0 (9)

The dimensionless initial conditions given by Eq. (9) become

�(1/2, 0) = �max,
∂�(1/2,  0)

∂	
= 0 (10)

It is worth noting that Eq. (8) is a classical Duffing-type equa-
tion which represents a nonlinear oscillator without damping. This
equation may  be solved via various methods, such as the method of
harmonic balance, equivalent linearization, generalized averaging
and multiple scales method (Nayfeh and Mook, 1979). By multiply-
ing Eq. (8) by �̇, integrating with respect to time and using Jacobi
elliptic function, the corresponding nonlinear frequency for this
nonlinear problem for each mode is defined by using the following
equation (Lestari and Hanagud, 2001):
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