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a b s t r a c t

The axial vibration of single walled carbon nanotube embedded in an elastic medium is studied using non-
local elasticity theory. The nonlocal constitutive equations of Eringen are used in the formulations. The
effect of various parameters like stiffness of elastic medium, boundary conditions and nonlocal parame-
ters on the axial vibration of nanorods is discussed. It is obtained that, the axial vibration frequencies of
the embedded nanorods are highly over estimated by the classical continuum rod model which ignores
the effect of small length scale.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In the last two decades, nano-scale engineering materials and
their technological applications have taken great interest after
invention of carbon nanotubes (CNTs) by Iijima (1991). Previous
studies related with CNTs (Dai et al., 1996; Falvo et al., 1997; Kim
and Lieber, 1999; Kong et al., 2000; Bachtold et al., 2001; Dharap
et al., 2004) have shown that CNTs have good electrical properties
and high mechanical strength so they can be used for nanoelec-
tronics, nanodevices, nanosensors and nanocomposites.

Since, molecular dynamic simulations are restricted to small
scale systems and to short time intervals, continuum mechanics
models were generally preferred to investigate elastic response
of CNTs in the previous studies. Initially, the classical continuum
mechanics models were directly applied to study bending, buckling
and vibration of CNTs. The classical Euler–Bernoulli, Timoshenko
and higher order shear deformation beam and shell models were
applied to study wave propagation, bending, buckling and vibra-
tion of CNTs (Ru, 2000; Yoon et al., 2005; Wang and Varadan, 2006;
Aydogdu, 2008a,b). After these applications of the classical con-
tinuum mechanics, its size independence was investigated. Sun
and Zhang (2003) studied the limitations of continuum models in
the nanometer length scale. They found that material properties
dependent on the length of plate structure. These results indi-
cate that discrete material structure at the nanoscale cannot be
homogenized into a continuum. At this point, the nonlocal elastic
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continuum models were considered in the analysis of nanostruc-
tures.

The nonlocal elasticity was first considered by Eringen
(1976,1983). He assumed that the stress at a reference point is
a functional of the strain field at every point of the continuum.
Peddieson et al. (2003) have used nonlocal Euler–Bernoulli model
for static analysis of nano beams and they concluded that the non-
local mechanics can be useful at nano length scale. Sudak (2003)
applied the nonlocal elasticity for column buckling. Static analysis
of micro and nano structures was studied by Wang and Liew (2007)
using the nonlocal Euler–Bernoulli and Timoshenko beam theories.
Wave propagation in CNTs is investigated by Wang (2005), Lu et al.
(2007), Narendar and Gopalakrishnan (2010), and Narendar (2011).
Vibration of CNTs, nano beams and rods were also studied in the
previous studies using the nonlocal elasticity (Ece and Aydogdu,
2007; Aydogdu and Ece, 2007; Aydogdu, 2009a,b; Karaoglu and
Aydogdu, 2010; Filiz and Aydogdu, 2010; Şimşek, 2010; Demir et al.,
2010; Arash and Wang, 2012).

The nonlocal continuum models and molecular dynamic simula-
tions were compared for wave propagation in SWCNTs and double
walled carbon nanotubes (DWCNTs) (Hu et al., 2008). Good agree-
ment was observed between molecular dynamic simulations and
nonlocal continuum modeling. Recently three dimensional behav-
ior of CNT was investigated by some researchers (Yuzhou and Liew,
2008; Gupta and Batra, 2008; Silvestre, 2008).

An advantage of CNTs is that due to their high stiffness, they are
promising candidate as reinforced fiber embedded in composites.
Recently, considerable attention has turned to mechanical behav-
ior of single walled and multiwalled carbon nanotubes embedded
in a polymer or metal matrix. Transverse vibration of carbon
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nanotubes embedded in an elastic medium was investigated
by many researchers using the local and nonlocal continuum
models (Yoon et al., 2003; Aydogdu, 2008a,b; Murmu and Pradhan,
2009; Ke et al., 2009; Kiani, 2010; Ansari et al., 2011; Ansari and
Hemmatnezhad, 2011).

The axial vibration of carbon nanotubes with uniform and
nonuniform cross-sections was investigated using the nonlocal
continuum models (Aydogdu, 2009a,b; Danesh et al., 2012). To the
best of the author knowledge, the axial vibration of the nanorods
embedded in an elastic medium was not considered in the previous
studies. So, the main objective of this study is to fill this gap in the
literature.

In this study, axial vibration of SWCNT embedded in an elas-
tic medium is studied using the nonlocal elasticity theory. The
effect of various parameters like stiffness of elastic medium, bound-
ary conditions, geometrical properties of nanotubes and nonlocal
parameters on the axial vibration of nanorods is investigated.

2. The nonlocal elasticity model for carbon nanotubes

Consider a SWCNT of length L and diameter d. The nonlocal
constitutive relations can be given as (Lu et al., 2007; Aydogdu,
2009a,b):

(1 − �∇2)�kl = �εrrıkl + 2Gεkl (1)

where �kl is the nonlocal stress tensor, εkl is the strain tensor, � and
G are the Lame constants, � = (e0a)2 is called the nonlocal parameter,
a is an internal characteristic length and e0 is a constant. Choice
of e0a (in dimension of length) is crucial to ensure the validity
of nonlocal models. This parameter was determined by match-
ing the dispersion curves based on the atomic models (Eringen,
1983). For a specific material, the corresponding nonlocal parame-
ter can be estimated by fitting the results of atomic lattice dynamic
and experiment. A conservative estimate of the scale coefficient
e0a < 2.0 nm for a SWCNT was proposed (Wang and Wang, 2007).
In this study, 0 ≤ (e0a)2 ≤ 2 is chosen in order to investigate nonlo-
cality effects. In the following sections parameter � is used instead
of (e0a)2.

For the axial vibration of uniform CNT, Eq. (1) can be written in
the following one dimensional form:(

1 − �
∂2

∂x2

)
�xx = Eε (2)

where E is the modulus of elasticity. The equation of motion for the
axial vibration can be obtained as

∂N

∂x
+ f = m

∂2u

∂t2
(3)

where u(x, y) is the axial displacement, m is the mass per unit
length, f is the distributed axial force acting on the rod and N is
the axial force per unit length defined by

N =
∫

A

�xxdA (4)

where A is the cross-sectional area of the CNT and �xx is the local
stress component in the x direction. Integrating Eq. (2) with respect
to area gives the following relation:

N − �
∂2N

∂x2
= NL (5)

where N =
∫

A�xxdA and NL denote axial force per unit length for
the nonlocal elasticity and local elasticity respectively. Using Eqs.

(3)–(5) the following equation of motion for free axial vibration of
nanorod can be found in terms of displacement:

EA
∂2u

∂x2
+ f − �

∂2f

∂x2
=

(
1 − �

∂2

∂x2

)
m

∂2u

∂t2
(6)

Eq. (6) is the consistent fundamental equation of the nonlocal rod
model for the axial vibration of CNT. This equation is reduced to the
equation of the classical rod model if the nonlocal parameter � is
identically zero.

2.1. Governing equations for SWCNTs embedded in an elastic
medium

In order to increase the strength of composites, CNTs are com-
monly embedded in an elastic medium, and the surrounding elastic
medium has strong effect on mechanical behavior of CNTs. To ana-
lyze axial vibration of embedded CNTs, a model is proposed in the
present study. Now, consider a typical SWCNT embedded in an
elastic medium (Fig. 1).

In this study, axial force due to elastic medium is assumed in the
following form:

f = −ku (7)

where k is the stiffness of the elastic medium. Inserting Eq. (7)
into Eq. (6) leads to following equation of motion for a nanorod
embedded in elastic medium.

EA
∂2u

∂x2
− ku + �k

∂2u

∂x2
=

(
1 − �

∂2

∂x2

)
m

∂2u

∂t2
(8)

when k = 0, Eq. (8) is reduced to the nonlocal rod equation of motion
without an elastic medium. To study the axial vibration of a nanorod
embedded in an elastic medium Eq. (8) should be solved for given
boundary conditions. Assuming harmonic vibration, u(x,t) can be
written in the following form:

u(x, t) = U(x)ejωt (9)

where ω is the circular frequency and j2 = −1. Introducing Eq. (9)
into Eq. (8) gives following dimensionless equation of motion

d2U

dx2
+ ˇ2U = 0 (10)

where related coefficients are defined as

ˇ2 = ˝2 − K̄

1 − (�/L2)˝2 + (�/L2)K̄
, (11a)

˝2 = mω2L2

EA
, K̄ = kL2

EA
(11b)

where ˝ and K̄ are the non-dimensional frequency parameter and
stiffness parameter respectively. The general solutions of Eq. (10)
can be written in the following form:

U(x) = C1 cos(ˇx) + C2 sin(ˇx) (12)

where Ci (i = 1,2) are the undetermined coefficients. To determine
the frequency parameter and mode shapes of the nano rod bound-
ary conditions should be given. In this study, clamped-clamped
(C-C) and clamped-free (C-F) boundary conditions are studied using
following relations:

C : u = 0,

F : N = EA
∂u

∂x
+ (e0a)2m

∂3u

∂x∂t2
= 0

(13)
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