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a  b  s  t  r  a  c  t

In  this  paper,  the  bending  behaviors  of  the  nanoplate  with  small  scale  effects  are  investigated  by  the  non-
local  continuum  theory.  The  governing  equations  for  the  nonlocal  Mindlin  and  Kirchhoff  plate  models  are
derived.  The  expressions  of  the  bending  displacement  are  presented  analytically.  The  difference  between
the  two  models  is  discussed  and  bending  properties  of  the  nanoplate  are  illustrated.  It  can  be  observed
that  the  small  scale  effects  are  obvious  for  bending  properties  of  the  nanoplate.  The  half  wave  numbers,
width  ratios  and  elastic  matrix  properties  also  have  significant  influence  on bending  behaviors.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Since the pioneer work on carbon nanotubes by Iijima (1991),
extensive research interests on nano structures have been con-
ducted (Baughman et al., 2002; Szabados et al., 2006; Narendar
et al., 2011). With the superior characteristics, many potential
applications can be expected such as the atomic-force microscope,
field emitters and nanoscale electronic devices in nano electrome-
chanical systems (NEMS). Among various excellent properties of
nano stuctures, the mechanical characteristics are important for
the design and analysis of the nanoscale devices and have received
lots of attention (Thostenson et al., 2001; Lau et al., 2006; Gibson
et al., 2007; Chong, 2008; Scarpa et al., 2009).

Since it is very difficult to perform the experiment at the
nanoscale and time consuming to do the molecular dynamics (MD)
simulation, many researches tune to apply the elastic continuum
models to investigate the mechanical characteristics of nano struc-
tures (Wang and Cai, 2006; Zhang et al., 2008; Lee et al., 2009;
Natsuki et al., 2010; Soltani et al., 2010). In recent years, in order to
consider the small scale effects, the nonlocal elastic theory pre-
sented by Eringen (1972, 1983) has presented the reliable and
proper results to shown the mechanical behaviors of nano struc-
tures (Peddieson et al., 2003; Wang and Varadan, 2006; Lu et al.,
2007a; Li et al., 2008; Ke et al., 2009).
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The nanoplate is a typical structure of nanoscale systems, which
can be deformed into the nanotube and made as the MEMS/NEMS
component. However, different from the researching status for the
nanotube, only several works have been reported on the nanoplate.
Kitipornchai et al. studied the vibration characteristics of multilay-
ered grapheme sheets (Kitipornchair et al., 2005). Duan and Wang
investigated the axisymmetric bending of circular plates with the
micro/nanoscale (Duan and Wang, 2007). Murmu  and Pradhan has
presented the vibration and buckling behaviors of the nanoplate
(Murmu  and Pradhan, 2009a,b,c).  In our recent work (Wang et al.,
2010a,b), the propagation characteristics of the longitudinal and
flexural waves in the nanoplate are investigated. It has shown that
the small scale effects are obvious for the mechanical characteris-
tics of the nanoplate.

The analytical method for the nanoplate is mainly based on the
Kirchhoff plate theory and usually the effect of the shear deforma-
tion is not considered. In the present work, the bending behaviors
are studied with the nonlocal Mindlin plate theory. The results
are presented as the displacement ratio of the nonlocal Mindlin
to nonlocal Kirchhoff plate models. Some influences (e.g. the scale
coefficient, half wave number and elastic matrix properties etc.) on
the bending properties are discussed.

2. Governing equations

Fig. 1 shows the nanoplate embedded in the elastic matrix. The
widths along the x and y direction is la and lb, respectively. The
thickness is h and the external load is q. According to the nonlocal
continuum theory (Eringen, 1972, 1983), which accounts for the
small scale effects by assuming the stress at a reference point as a
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Fig. 1. Nanoplate embedded in elastic matrix with external loads.

function of the strain at every point in the body, the constitutive
relation can be presented as the following integral form:

�kl, k − � ül = 0, (1a)

�kl(x) =
∫
V

˛(x, x′)�kl(x′)dV(x′), (1b)

εkl =
1
2

(uk,l + ul,k), (1c)

where �kl is the nonlocal stress tensor, εkl the strain tensor, � the
mass density, ul the displacement vector, �kl(x′) the classical (i.e.
local) stress tensor, ˛(x, x′) the kernel function which describes the
influence of the strains at various location x′ on the stress at a given
location x and V the entire body considered.

It can be observed that the spatial integrals are involved in the
nonlocal constitutive relation, which results in the difficulty for the
problem. However, these integral equations can be reduced to the
partial differential forms and the nonlocal constitutive relation can
be employed conveniently. Then, the Hook’s law can be expressed
as

�x − (e0a)
2∇2�x = E

1 − �2
(εx + �εy), (2a)

�y − (e0a)
2∇2�y = E

1 − �2
(εy + �εx), (2b)

�y z − (e0a)
2∇2�y z = E

1 + �
εy z , (2c)

�x z − (e0a)
2∇2�x z = E

1 + �
εx z , (2d)

�x y − (e0a)
2∇2�x y = E

1 + �
εx y, (2e)

where E the Young’s modulus, � the Poisson’s ratio, e0 the constant
appropriate to each material and a the internal characteristic length
(e.g. the length of C–C bond, the lattice spacing and the granular
distance) and e0a means the scale coefficient which denotes the
small scale effect on the mechanical characteristics. If e0a = 0, this
relation will be reduced to the classical local model.

With the effects of the transverse shear and rotary inertia, the
displacements can be expressed as

u = u(x, y, t) + z x(x, y, t), v = v(x, y, t) + z y(x, y, t),

w = w(x, y, t), (3)

where  x and  y the local rotations for the x and y directions,
respectively.

Furthermore, the strain can be expressed as

εx = ∂u

∂x
+ z
∂ x
∂x
,  εy = ∂v

∂y
+ z
∂ y
∂y
,  εz = 0, (4a)

εx z = 1
2

(
∂w

∂x
+  x

)
, εy z = 1

2

(
∂w

∂y
+  y

)
, (4b)

εx y = 1
2

(
∂u

∂y
+ ∂v
∂x

+ z
∂ x
∂y

+ z
∂ y
∂x

)
. (4c)

The bending moments and shear forces are

Mx =
∫ h/2

−h/2

�xz dz, My =
∫ h/2

−h/2

�yz dz,

Mxy =
∫ h/2

−h/2

�x yz dz,  (5a)

Sx =
∫ h/2

−h/2

�x  z dz, Sy =
∫ h/2

−h/2

�y zdz. (5b)

According to Eqs. (2a)–(2e), (5a) and (5b), we can derive the fol-
lowing relation:

Mx − (e0a)
2∇2Mx = D

(
∂ x
∂x

+ �
∂ y
∂y

)
, (6a)

My − (e0a)
2∇2My = D

(
∂ y
∂y
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∂ x
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)
, (6b)
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2∇2Mx y = 1

2
D(1 − �)

(
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+ ∂ y
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)
, (6c)

Sx − (e0a)
2∇2Sx = � G h

(
∂w
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+  x

)
, (6d)

Sy − (e0a)
2∇2Sy = � G h

(
∂w

∂y
+  y

)
, (6e)

where G is the shear modulus, D = Eh3/12(1 − �2) the bending stiff-
ness and � the shear correction factor.

The governing equations with the elastic matrix and the external
load are (Murmu  and Pradhan, 2009a; Reddy, 1997; Lu et al., 2007b;
Pradhan and Phadikar, 2009; Achenbach, 1973)

∂Sx
∂x

+ ∂Sy
∂y

+  q = kww − Gb∇2w, (7a)

∂Mx
∂x

+ ∂Mx y

∂y
−  Sx = 0, (7b)

∂My
∂y

+ ∂Mxy
∂x

− Sy = 0, (7c)

where kw the Winkler foundation modulus, Gb the stiffness of the
shearing layer.

Based on Eqs. (6a)–(6e) and Eqs. (7a)–(7c), the governing equa-
tions of the nanoplate with the nonlocal Mindlin plate model can
be derived as

[1 − (e0a)
2∇2]kww − Gb[1 − (e0a)

2∇2] ∇2w
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, (8a)
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