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a b s t r a c t

In this paper a new finite element approach for the solution of the Timoshenko beam is shown. Similarly
to the Euler–Bernoulli beam theory, it has been considered a single fourth order differential equation
governs the equilibrium of the Timoshenko beam. The results obtained by this approach are very good,
both in terms of accuracy and computational effort.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In structural mechanics, the Euler–Bernoulli beam model
(EBBM) represents the most widely used theory for modelling the
behaviour of the beam. This theory was extended by Timoshenko
(1922) in order to account for the deformation shear effects, that
are neglected in the EBBM. The corresponding extended theory is
usually known as Timoshenko beam model (TBM). This extension
gave small correction for slender beams and significant differences
in case of short beams.

A large number of Finite Element (FE) methods applied to the
TBM appeared in the literature in the last fifty years (Heiliger
and Reddy, 1988; Nickell and Secor, 1972; Prathap and Bhashyam,
1982; Reddy, 1993; Tessler and Dong, 1981). Most of them differ
from one other in the choice of interpolation functions used for the
deflection, w, and rotation, ϕ, or in the weak form used for the for-
mulation of the FE model. Some of them are based on the equal
interpolation order for w and ϕ. But these last ones lead to the so-
called shear locking problem (Prathap and Bhashyam, 1982; Reddy,
1993), due to the inconsistency of the same order of interpolation
used for quantities having different dimensions. This problem was
partially solved by some approaches, as well described in Reddy
(1993). The most known are the Consistent Interpolation Element
(CIE) method and the Reduced Integration Element (RIE) method;
a particular mention must be given to the Interdependent Interpo-
lation Element (IIE) method (Reddy, 1997), as well.

It is important to note that most authors consider the problem
as governed by two equilibrium equations expressed in terms of
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deflection and rotation, whereas only few of them evidence the pos-
sibility of coupling these equations in terms of deflection, w (Craig,
1981; Antes, 2003; Li, 2008). Moreover, it is possible to obtain a
single governing differential equation expressed in terms of rota-
tion, ϕ, too. These considerations are fundamental for the present
work. The application of the weak formulation to the single differ-
ential equation governing the TBM allows us to obtain a FE approach
which is an evident extension of the FE approach applied to the
EBBM. As a matter of fact, for example, the primary variable to
be interpolated is only one and the interpolation is made through
Hermite polynomials, as in the EBBM.

2. Preliminary concepts

The equations governing the elastic behaviour of a Timoshenko
beam are:

(a) The equilibrium ones:

T ′(x) = −q(x); M′(x) = T(x) (1a,b)

where q(x) is the transversal distributed external load; T(x) and M(x)
are the shear and moment internal forces; the prime apex means
derivative with respect to x; (b) the compatibility equations:

�(x) = ϕ(x) + w′(x); �(x) = ϕ′(x) (2a,b)

where w(x) and ϕ(x) are the deflection and rotation generalized dis-
placements, while �(x) and �(x) are the curvature and shear angle
strains; (c) the constitutive equations:

T(x) = t(x)�(x); M(x) = b(x)�(x) (3a,b)

where b(x) and t(x) are the moment and shear stiffness. Assuming
that these last stiffness quantities are constant along the axis and
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assembling the previous equations, the following two governing
equations can be easily obtained:

t(ϕ′(x) + w′′(x)) = −q(x); bϕ′′(x) = t(ϕ(x) + w′(x)) (4a,b)

These are the two classical differential equations used, together
with the opportune boundary essential and/or natural conditions,
for solving the TBM elastic problem.

3. Alternative single governing differential equations for
the TBM

In this section we will show that the elastic problem of the
TBM can be governed by a single fourth order differential equation
where the unknown variable is the deflection w(x) or a fictitious
generalized deflection w̄(x), which is related to the rotation ϕ(x).

Hence, Eqs. (4a,b) are rewritten as:

ϕ′(x) = −q(x)
t

− w′′(x); bϕ′ ′′(x) = t(ϕ′(x) + w′′(x)) (5a,b)

Substituting Eq. (5a) and its second order derivative in Eq. (5b) the
following fourth order differential equation is obtained:

w′′ ′′(x) = q(x)
b

− q′′(x)
t

(6)

It is interesting to note that this equation differs respect to the
elastic EBBM governing equation for the presence of the which the
second derivative of the load. Consequently, for constant and linear
transversal loads, the governing equations for the EBBM and TBM
are coincident.

Nevertheless, substantial differences arise in the imposition of
the boundary conditions. As a matter of fact, in the TBM the rotation,
the moment and the shear force are expressed in terms of w(x) as
follows:

M(x) = −bw′′(x) − b

t
q(x); T(x) = −bw′ ′′(x) − b

t
q′(x)

ϕ(x) = −w′(x) − b

t
w′ ′′(x) − b

t2
q′(x)

(7a–c)

It is important to note that these relationships coincide with those
related to the EBBM if the stiffness ratio b/t is set to be zero. Now, the
TBM solving equation will be obtained respect to a new fictitious
displacement variable, w̄(x). Eqs. (4a,b) can be combined in a single
equation in terms of the rotation ϕ(x), that is:

bϕ′ ′′(x) = −q(x) (8)

It is well known that a third order differential equation cannot
govern the problem of a beam, because of the need to satisfy four
boundary conditions. Hence, the fictitious deflection w̄(x) is intro-
duced so as ϕ(x) = −w̄′(x). As a consequence, Eq. (8) is rewritten
as:

bw̄′′′′(x) = q(x) (9)

that has exactly the same form of the differential equation govern-
ing the EBBM. Eq. (9) defines the variable w̄(x) in spite of a constant.
Nevertheless, it is simple to verify that the following relationship
holds except for a constant that can be chosen equal to zero because
it is unessential in the other relationships:

w̄(x) = w(x) − M(x)
t

(10)

In fact, the derivative of each of the members of this equation give
the opposite of the rotation. As it will be seen in Section 5, this rela-
tionship is fundamental for defining the properties of the proposed
approach.

Another very interesting result is that the relationships between
w̄(x) and the rotation, the bending moment and the shear force have
the same forms of those of the EBBM in terms of w(x); they are:

ϕ(x) = −w̄′(x); M(x) = −bw̄′′(x); T(x) = −bw̄′′′(x) (11a–c)

These relationships are completed by that one giving the effective
deflection, that can be easily obtained by replacing Eq. (11b) into
Eq. (10):

w(x) = w̄(x) − b

t
w̄′′(x) (12)

Therefore, it has been proved that the TBM can be solved respect
to a single variable, w(x) or w̄(x); namely, both the single differen-
tial governing equation and the essential and/or natural boundary
conditions can be expressed in terms of this single variable. This
idea suggests the definition of a new FE approach for the TBM, that
is the fundamental subject of this paper.

4. Some classical finite element approaches

For clarity’s sake, in this section we will remind some
well-known approaches with the aim of highlighting the main dif-
ferences with respect to the proposed one. One of the most classical
approaches, based on the application of the variational methods,
can be found in Reddy (1993). In particular, it considers the weak
form of Eqs. (4a,b). The weak form of Eq. (4a) shows that the
deflection is a primary variable, whose corresponding secondary
variable is the shear force; whereas, in the weak form of Eq. (4b)
the primary variable is the rotation and the secondary one is the
moment. In each finite element the deflection and the rotation are
interpolated by independent Lagrange polynomials that could have
different orders. The choice of using the same order of interpola-
tion is very common because it requires two primary variables for
any node. But, because of the presence of the derivative operator
in the relationship between w(x) and ϕ(x), this choice leads to a
numerical problem known as shear locking. To avoid this problem,
two alternative procedures have been introduced in the literature
(also reported in Reddy (1993)): (a) the Consistent Interpolation
Element (CIE) method, that uses for w(x) an interpolation of one
order greater than that related to ϕ(x); (b) the Reduced Integration
Element (RIE) method, that uses the same order of interpolation,
but evaluates the contributions to the stiffness terms depending on
the bending deformation energy by the actual interpolation of ϕ(x),
while, those depending on the shear deformation energy are eval-
uated by using one order lesser polynomial. Another interesting
approach in the literature is the so-called Interdependent Inter-
polation Element (IIE) method, introduced by Reddy (1997). This
method is based on the solution of the homogeneous equations cor-
responding to Eqs. (4a,b); it corresponds to applying a third order
interpolation on w(x) and implies the presence of only two nodes for
finite element. Imposition of the minimum potential energy princi-
ple leads to the following expression of the finite element stiffness
matrix:

kt = 2b

�h3

⎡
⎢⎣

6 −3h −6 −3h
−3h 2h2� 3h h2˛
−6 3h 6 3h
−3h h2˛ 3h 2h2�

⎤
⎥⎦ ;

˛ = 1 − 6˝
� = 1 + 3˝

� = 1 + 12˝
˝ = b/

(
th2

) (13)

Reddy considered it as the exact stiffness matrix for the Timoshenko
beam theory.

5. Proposed method

The starting point of this method is the application of the weak
formulation directly to Eq. (9). If a generic finite element of length
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