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Abstract

An asymptotic theory of the anelastic approximation is developed for fluids having arbitrary equations of state
under two assumptions: weak compressibility and small Brunt–Väisälä frequency. We show that both Boussinesq
approximation (BA) and anelastic approximation (AA) may be included in a unique quasi-incompressible approximation

(QIA) already constructed by Durran for polytropic gases. The only difference between AA and BA is that, in the BA,
the equations are with slowly varying coefficients, while in the AA the coefficients are fast varying. Applications are
made to atmospheric air and to sea-water.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: Anelastic approximation; Boussinesq approximation; Quasi-incompressible approximation; Deep convection; Shallow
convection; Weakly compressible fluids

1. Introduction

Deep convection, in geophysical flows, is characterized by (i) a small Mach number and, (ii), a large ver-
tical wavelength (e.g. of the same order of magnitude as the whole height of the troposphere). However a
study of degeneracies of Navier–Stokes equations for vanishing Mach number (say e) and Froude number
(say F), leads, in general, to three limits only, namely: solenoidal flow (F2 < e), quasi-static flow (F2 > e), and
the Boussinesq approximation, (BA, limit case F2 = e): among these limits, the equations of convection (the
BA) depict shallow convection only, so that the deep convection must be looked for by another way. Such
way is to take into account the small square of the Brunt–Väisälä frequency, say N2(z), of the medium.

A model taking into account a small N2(z), was proposed by Ogura and Phillips (1962), who call it
anelastic approximation (AA). Its formalism was not mathematically developed, and several papers progres-
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sively improved the theory (Lipps and Hemler, 1982; Lipps, 1990). A paper including together the AA and
the BA was proposed by Durran (1989) who defined, for polytropic gases, the quasi-incompressible approx-

imation (QIA). Formulations of the AA are found, today, in books such as those of Zeytounian (1990),
Emanuel (1994), and Durran (1999).

The aim of the present paper is, first, to construct a mathematical support for the AA, and to mathemat-
ically relate the AA and the BA. Second, we define the QIA for arbitrary equations of state. In particular,
we show that, through the QIA, both BA and AA reduce to the same equations with the only difference that
these equations are with slowly varying coefficients for the BA and with fast varying in the AA. An appli-
cation is, then, made to sea-water.

2. Asymptotic modelling

2.1. Small parameters and degenerate equations

We consider a pure non-dissipative fluid. Written using a classical notation the equations of motion read

oq=ot þ $ � ðquÞ ¼ 0; qdu=dt þ ð1=e2Þf$p þ ð1=F �2Þqkg ¼ 0; ð1Þ
� ðkT q=cphÞdh=dt ¼ dq=dt � ð1=c2Þdp=dt ¼ 0; q ¼ f ðp; T Þ. ð2Þ

k is the unit vector of vertical direction. The variable h figuring in the energy equation is the potential tem-

perature of the medium, related with the entropy per unit of mass s 0 by the relation dh=h ¼ ds0=c�p. The coef-
ficient k is the thermal expansivity: k = �(1/q)(oq/oT)p. The function f defines the equation of state, the
sound speed c is known by a function c2 = g(p,q) (say) when f is known. The scaling is made as follows:

u0 ¼ Uu; x0 ¼ Lx; t0 ¼ ðL=UÞt; T 0 ¼ H�T ; h0 ¼ H�h; s0 ¼ c�pLogh;

q0 ¼ q�q; p0 ¼ q�c�pH
�p; c0p ¼ c�pcp; c02 ¼ c�pH

�c2; k0 ¼ k=H�;

(
ð3Þ

where the primed variables denote physical variables, and U, L, and the starred variables denote the (con-
stant) reference quantities. The two numbers e and F* are defined by

e ¼ U
ffiffiffiffiffiffiffiffiffiffi
c�pH

�
q.

; F � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�pH

�=Lg
q

. ð4Þ

The parameter e is a compressibility parameter. The number F*2 may be interpreted as the ratio of two
lengths H ¼ c�pH

�=g (length scale associated with the medium), and L (length scale associated with the con-
sidered problem). The Froude number F of the flow is nothing but F ¼ F �e ¼ U=

ffiffiffiffiffiffi
gL
p

. We look for degen-
erate forms of Eqs. (1) for vanishing e. Hence we set

u ¼ �u ¼ �u0 þ guðeÞ�u1 þ � � � ; p ¼ P 0 þ gpðeÞ�p; q ¼ R0 þ gqðeÞ�p;
T ¼ T 0 þ gT ðeÞT ; h ¼ H0 þ ghðeÞ�h; c ¼ C0 þ gcðeÞ�c;

(
ð5Þ

where the gu(e)�s, etc. are gauge functions a priori undetermined, but such as lime!0(gu(e)) = 0 etc. We
assume that P0, R0, T0, etc. depend on z only. It results that

P 0 ¼ P 0ðfÞ; R0 ¼ R0ðfÞ; T 0 ¼ T 0ðfÞ; H0 ¼ H0ðfÞ; C0 ¼ C0ðfÞ; P 00ðfÞ þ R0 ¼ 0; ð6Þ
where f = F*�2z. Now consider the equations at next order with respect to �. After discarding the static
terms the remaining momentum equation and the energy equation read

R0ðfÞd�u0=dt þ ð1=e2ÞfgpðeÞ$�p þ ðgqðeÞF ��2Þ�qkg ¼ 0; ð7Þ
F ��2R0ðfÞN 2ðfÞ�w ¼ gqðeÞd�q=dt � ðgpðeÞ=C2

0ðfÞÞd�p=dt � 2gcðeÞF ��2½R0ðfÞ=C3
0ðfÞ��c�w; ð8Þ
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