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a  b  s  t  r  a  c  t

Existing  cohesive  zone  models  assume  that  actual  fracture  zone  of  non-zero  mass  can  be modeled  by  a
line segment  (cohesive  zone)  with  no mass  and  inertia.  In the  present  work,  a simplified  mass-spring
model  is presented  to  study  inertia  effect  of cohesive  zone  on  a mode-I  steady-state  moving  crack.  It  is
showed that  fracture  energy  predicted  by  the  present  model  increases  dramatically  when  a finite  limiting
crack speed  is approached.  Reasonable  agreement  with  known  experiments  indicates  that  the  present
model  has  the  potential  to  catch  the  inertia  effect  of  cohesive  zone  which  has  been  ignored  in  existing
cohesive  zone  models  and  better  simulate  dynamic  fracture  at high  crack  speed.

© 2016  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

The cohesive zone models, first proposed by Barenblatt [1] and
Dugdale [2] for a static crack, have successfully been employed in
analytical and numerical studies of crack propagation in nonlinear
or ductile materials [3–9]. In all existing cohesive zone models, the
cohesive zone, which represents actual fracture zone of non-zero
volume and mass, is simplified as a line segment with no volume
and mass. The constitutive law in cohesive zone is modeled by lin-
ear or nonlinear springs distributed along the cohesive zone [10,11]
and the surrounding bulk materials are often assumed to be linearly
elastic [5,6]. Apparently, all of the above-mentioned existing cohe-
sive zone models have completely ignored the mass and inertia
of the cohesive zone. Since the cohesive zone actually represents
fracture region ahead of the crack tip in which complex plastic or
nonlinear deformation dominates [12,13], the mass of this frac-
ture region, which has been ignored in the existing cohesive zone
models, could have a significant effect on dynamic fracture of a
high-speed moving crack. Therefore, it is of great interest to study
the inertia effect of cohesive zone ignored in existing cohesive zone
models. To the best of our knowledge, this issue has not been well
addressed in the literature.

On the other hand, from experimental observations, a limit-
ing crack propagation speed is found for many materials [14–16].
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Sharon et al. [15] attributed this physical phenomenon to micro-
cracks formed at higher crack speed; while Gao  [14] proposed a
wavy crack model in which the energy release rate reaches max-
imum at limiting crack speed. For cohesive zone models, Roy and
Dodds [16] proposed that the materials in cohesive zone should be
weaker than bulk materials. However, the mass and inertia of cohe-
sive zone, as well as its effect on dynamic fracture have not been
considered in above-mentioned researches.

The present paper aims to study the inertia effect of the cohesive
zone on a mode-I Yoffe-type steady-state moving crack of constant
length. The cohesive zone of mass and inertia is modeled as dis-
tributed springs with concentrated mass attached at the two ends
of each spring, as shown in Fig. 1. The present new cohesive zone
model for a steady-state moving crack of Yoffe-type is described
in Section 2. Determination of the mass distribution function in
cohesive zone is discussed in Section 3. In particular, the mass
distribution along cohesive zone is defined by a simple function
which vanishes at the two  ends of the cohesive zone so that traction
remains finite at both crack tips and cohesive zone tips. Iteration
method and an alternative numerical method are described and
tested in Section 4. Traction distribution surrounding the cohe-
sive zone and speed-dependent fracture energy are then solved
numerically and discussed in Section 5. Finally, main conclusions
are summarized in Section 6.
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Fig. 1. A crack of constant length 2c moving along the x-axis at speed V in the moving coordinate system (x, y) with a cohesive zone characterized by distributed mass-springs,
where T is the remote mode-I loading, c’ is the cohesive zone length, Sy is the outer traction surrounding the cohesive zone, M is the distributed mass attached on the two
ends  of each spring, f(uy) is the inner traction, uy is the half of cohesive zone separation and a+ is the y-directional acceleration of the upper end of the spring.

2. Mass-spring cohesive zone model

Let us consider a Yoffe-type steady-state moving crack. The
crack of constant length 2c in an infinite elastic sheet or plane,
subjected to the mode-I remote tensile loading T, is moving at a
constant speed V along the x-axis in a moving coordinates system
(x, y). The cohesive zone is defined as a line segment and have a
length c’ ahead of each crack tip (see the left figure in Fig. 1). How-
ever, different than the traditional cohesive zone models in which
the mass of the cohesive zone is ignored [3–9], in the present paper,
the cohesive zone is modeled by a mass-spring system in which a
distributed mass M(x) (per unit length along the cohesive zone,
whose specific form is to be determined below) is attached to the
two ends of the distributed spring in the cohesive zone (see the
right figure in Fig. 1). During fracture process, the cohesive zone
face becomes a part of crack faces, so the mass of particular point of
cohesive zone changes. However, for a steady-state moving crack
problem, since the cohesive zone length remains unchanged, the
mass and kinetic energy of the cohesive zone and the whole system
including cohesive zone and bulk materials are conserved.

The outer traction Sy surrounding the cohesive zone is given by

Sy(x) = f (uy) + M(x)a+(x), c ≤ |x| ≤ c + c′ (1)

where, a+ is y-directional acceleration of the upper cohesive zone
face (at the upper end of the spring), uy is the half of cohesive
zone separation, and f(uy) is the inner traction inside the cohesive
zone which defines the Tracion-Seperation (T-S) law in the cohe-
sive zone [10,11]. In the present paper, we consider the T-S law
inside the cohesive zone can be described by a bilinear model with
2 adjustable parameter Smax and u0 (see Fig. 2).

f (uy) =
{

(Smax − S0)uy(x)/u0 + S0, uy(x) ≤ u0

Smax
[
uy(c) − uy(x)

]
/
[
uy(c) − u0

]
, uy(x) ≥ u0

(2)

In Fig. 2, S0 is the initial yielding traction at the end of cohesive
zone which is related with crack speed and influenced by the inertia
effect of bulk materials [17], and Smax is the maximum inner trac-
tion inside cohesive zone, u0 is the half of cohesive zone separation
at the location of maximum traction, and uy(c) is the half of cohe-
sive zone separation at the crack tip. In the present paper, the value
of Smax/S0 and u0/uy(c) are assumed independent of crack speed.
When u0 = 0, from the second Eq. in (2), the traction-separation
law in cohesive zone reduces to a linear strain softening model [5]:
f(uy) = Smax[1 − uy(x)/uy(c)].

Fig. 2. A bilinear T-S law f(uy) employed in the present paper, where S0 is the initial
yielding traction at the end of the cohesive zone, Smax is the maximum traction
in cohesive zone, and u0 is the half of cohesive zone separation at the location of
maximum traction.

To solve Eq. (1), one needs a relation between the outer trac-
tion Sy(x) and the cohesive zone separation 2uy(x). For this end,
we consider that the traction Sy(x), surrounding the cohesive zone,
can be given in the form of symmetric polynomial P(x) with n real
coefficients

Sy(x) = P(x) = Anx
2n−2 + An−1x

2n−4 + · · · + A2x
2 + A1 (3)

where, A1, A2, . . .,  An are real constants and will be determined by
Eq. (1). From [17], the half of cohesive zone separation can be given
by

uy(x) =
x∫
c+c′

A(V)
��

[
−P(t) ln

t
√

(c + c′)2 − c2 + c
√

(c + c′)2 − t2

t
√

(c + c′)2 − c2 − c
√

(c + c′)2 − t2

+ Q (t)√
(c + c′)2 − t2

− �Tt√
(c + c′)2 − t2

]
dt

(4)

where, � is the elastic shear modulus and

A(V) = ˇ1(1 − ˇ2
2)

4ˇ1ˇ2 − (1 + ˇ2
2)

2
(5)
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