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a  b  s  t  r  a  c  t

This paper  focuses  on the  prediction  of  thermal  conductivity  of foam  concretes.  Various  analytical  forms
for  their  effective  thermal  conductivity  according  to their  porosity  p (air  voids  volume)  have  been  first
derived  based  on  five  well-known  Mean-Field  Homogenization  (MFH)  schemes.  These  predictions  were
found to  be  very  close  for low  porosities  but  move  away  gradually  with  increasing  porosity.  Thus,  in
order  to determine  the best  homogenization  scheme  predicting  the  effective  thermal  conductivity  of
foam  concretes,  MFH  predictions  were  confronted  with  experimental  data  obtained  on nineteen  foam
concretes and  also with numerical  results  obtained  from  3d  Finite  Element  Method  (FEM)  simulations
conducted  on  an  idealized  foam  concrete.  These  comparisons  have  shown  that  the  normalized  effective
thermal  conductivity  of  foam  concrete  is  closely  framed  by  the  power  law  (1-  p)3/2 given by  the  Differential
scheme  and  by  the  hyperbolic  law  (1- p)/(1+  p/2)  given  by  the  Mori-Tanaka  scheme.

© 2016  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Foam concrete which is referred to also as cellular concrete
is made of a cementitious matrix (a cement paste or a mortar)
containing a high volume of air voids up to 0.85. This macro poros-
ity can be obtained by adding to the cement matrix during the
mixing process a preformed foam consisting of ultra-lightweight
aggregates filled with air. In particular, expanded polystyrene (EPS)
millimetre-size beads having a very low density (ranging between
0.015 and 0.03) are widely used today to make foam concretes.
Another way to generate high porosity inside concrete consists
of introducing in the cement matrix during the mixing process a
gassing agent or an air entraining agent that entrains a high vol-
ume  of air within concrete. This agent can be synthetic-based as
aluminum powder or protein-based.

Due to their interesting properties and to their various applica-
tions, foam concretes are increasingly used in modern construction
and are the focus of many researchers [1–8]. They are employed to
decrease dead load of buildings when they are used in walls, parti-
tions and screeds. They are also used as energy-absorbing materials
for the protection of buried military structures and as fenders in
offshore oil platforms. Besides, their high porosity makes them
excellent thermal insulation materials. Within this context, the
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present study deals with the prediction of the thermal conductivity
of foam concretes according to their microstructure.

The present paper is organized as follows. In Section 2, vari-
ous analytical forms predicting the normalized effective thermal
conductivity of isotropic porous materials according to their poros-
ity are derived based on well-known Mean-Field Homogenization
(MFH) schemes. In Section 3, these MFH  predictions are confronted
with experimental data obtained on foam concretes. In Section 4,
MFH predictions are compared with numerical results obtained
from Finite Element Method (FEM) simulations carried out on an
idealized porous concrete. Finally, the major conclusions of the
paper are summarized in Section 5.

2. MFH  applied to the thermal conduction problem on
isotropic porous solids

Evaluation of the effective thermal conductivity of heteroge-
neous materials in general and of porous solids in particular
remains of interest although various approaches and models are
available in literature [5,9–19]. In the present investigation, the
well-known Eshelby-based Mean Field Homogenization (MFH)
approach has been employed. Since foam concretes can be seen
as a particular case of two-phase isotropic composites made of a
solid matrix and where the inclusions phase is replaced by a ran-
dom distribution of spherical air voids or EPS beads, MFH  can be
relevant to estimate their effective thermal conductivity according
to their microstructure. Thus, we consider a Representative Volume
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Element (RVE) of an isotropic porous material made of an isotropic
and homogeneous solid matrix containing spherical pores with a
total volume fraction or macro porosity p. It follows that the matrix
phase volume fraction is (1-  p) and it is easy to check that the aver-
ages over the entire RVE (occupying a domain (ω) of a volume V),
the matrix phase (ωm) and the pores phase (ωp) are related by:

〈f 〉ω = p〈f 〉ωp + (1 − p)〈f 〉ωm (1)

with 〈f 〉ω =
(

1/V
)∫

ω

f (x)dV and where x is the position vector in a

local frame attached to the RVE. The latter is subjected on its bound-
ary

(
∂�

)
to a linear boundary temperature field T(x) corresponding

to a uniform temperature gradient field E
(
T (x) = E · x on ∂ω

)
.

The micro temperature gradient field ∇T(x) within the RVE is thus
related to the macro field E through a still unknown temperature
gradient concentration tensor A(x) as follows: ∇T(x) = A(x) : E in
ω. Moreover, it is easy to check that 〈∇T〉ω = E and it follows that
〈A〉ω = ı, where ı is the second order symmetric identity tensor.

The thermal conductivity of the isotropic solid matrix is denoted
�m and that of pores �p is neglected since pores are filled with air
which thermal conductivity is negligible compared to �m.

Assuming that the considered RVE is sufficiently wide, the
Hill-Mandel’s lemma  stipulating the equivalence between the het-
erogeneous RVE and its equivalent homogenous RVE, having the
same volume V and subjected on its boundary to the same linear
temperature field T (x) = E · x as the heterogeneous RVE but charac-
terized by a still unknown effective thermal conductivity denoted
�hom, allows to write that:

〈�T · q〉
ω

= 〈�T〉ω · 〈q〉
ω

= E · Q (2)

where q and Q are respectively the micro heat flow vector of the
heterogeneous RVE and the macro heat flow vector of its equivalent
homogenous RVE. The latter is therefore given by:

Q = 〈q〉
ω

= 〈−� · �T〉ω = 〈−� · A〉
ω

· E (3)

Then, since Q = −�hom · E, it follows that the effective thermal
conductivity �hom is given by:

�hom = 〈� · A〉
ω

(4)

In the particular case of isotropic porous solids,�p = 0 and the
previous formula is reduced to:

�hom = �m

(
� − p〈A〉

ωp

)
(5)

Thus, to determine the effective thermal conductivity �hom of
an isotropic porous solid, we need to compute or to estimate the
average of the temperature gradient concentration tensor over the
pores phase 〈A〉

ωp
. For the crude approximation: 〈A〉

ωp
= ı which

means that the temperature field is homogeneous inside the het-
erogeneous RVE (i.e. ∇T (X) = E in � ) , we obtain:

�hom
Voigt(p) = �m(1 − p) (6)

This homogenization scheme is commonly referred to as the
Voigt model and it provides the upper bound for the effective
thermal conductivity of isotropic porous solids according to their
porosity.

Mean-Field Homogenization is classically based on Eshelby’s
tensors [20]. The latter are derived from the resolution of auxil-
iary thermo-elastic problems and are used to estimate the average
elastic strain and stress, temperature gradient and heat flow fields
inside inclusions (pores here). Eshelby’s concentration tensors
account also for inclusions shape and orientation. In the case of
isotropic two-phase composites and particularly isotropic porous

solids, explicit formulae can be derived for Eshelby’s tensors lead-
ing to explicit estimates for the effective elastic moduli and thermal
conductivity of these materials.

2.1. Eshelby’s and Hill’s tensors of the auxiliary thermal
conduction problem

For a single ellipsoidal heterogeneity having an isotropic ther-
mal  conductivity �I and occupying a domain (I) embedded in an
infinite homogeneous matrix having an isotropic thermal con-
ductivity �m and subjected to a uniform temperature gradient
field E on its boundary (i.e.∇T(x) = E.xat∞), Eshelby [20] showed
that the temperature gradient field inside (I) is uniform and that:
∇T(x) = HI : E inside (I), where HI is the Eshelby’s temperature
gradient concentration tensor related to this auxiliary thermal con-
duction problem and which is given by the following expression:

HI =
[
ı + (�I − �m)PI

]−1
,with PI is the Hill’s polarization tensor

[21] associated to the Eshelby’s tensor HI. In the particular case

of a single spherical pore
(
�I = �p = 0

)
embedded in an infinite

isotropic matrix, the Hill’s tensor is given by: PI = 1
3�m

ı and the
Eshelby’s temperature gradient concentration tensor is reduced to:
HI = 3

2ı.
Hereafter, analytical formulae for the effective thermal con-

ductivity of isotropic porous solids are derived based on four
well-known Mean-Field Eshelby-based Homogenization schemes:
the Dilute method, the Mori–Tanaka model, the Self Consistent
model and the Differential method.

2.2. The Dilute scheme

The Dilute scheme or method does not account for interaction
between pores. It stipulates that each pore (I) behaves like an iso-
lated pore in an infinite matrix subjected to a uniform temperature
gradient field E on its boundary, which corresponds to the Eshelby’s
single heterogeneity problem.

Thus, 〈A〉
ωp

Dilute = HI = 3
2ı in the case of isotropic porous solids

and it follows that:

�hom
Dilute(p) = �m(1 − 3

2
p) (7)

2.3. The Mori-Tanaka scheme

According to this model [22,23], each pore (I) behaves like an
isolated pore in an infinite matrix subjected on its boundary to the
average of the temperature gradient field over the matrix phase
〈∇T〉ωm. Consequently, the gradient temperature field inside (I) is
uniform and is given by: ∇T (x) = HI : 〈∇T〉ωm inside (I).

Thus, 〈∇T〉ωp = 3
2(1+ p

2 )
: E and it follows that:

�hom
M−T (p) = �m

1 − p

1 + p
2

(8)

We note also that this hyperbolic form according to poros-
ity given by the Mori-Tanaka scheme corresponds in the case of
isotropic porous solids to the Hashin-Shtrikman upper bound [24]
and also to the estimate of the Hashin Composite Sphere model
[25]. It coincides also in this case with the Maxwell’s model [9].

2.4. The Self-Consistent scheme

The Self-Consistent scheme [21,26] can be defined directly by
assuming that each pore (I) is embedded in a fictitious homo-
geneous and infinite matrix possessing the effective unknown
thermal conductivity �SC and subjected to a uniform temperature
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