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Stan  Chiriţă a,b,∗,  Alexandre  Danescuc

a Faculty of Mathematics, Al. I. Cuza University of Iaş i, 700506 Iaş i, Romania
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c Lyon Institute of Nanotechnology, Ecole Centrale de Lyon, 69131 Ecully, France

a  r  t i  c  l  e  i  n  f  o

Article history:
Received 3 February 2016
Received in revised form 10 May  2016
Accepted 11 May  2016
Available online 19 May  2016

Keywords:
Thermoelasticity with microtemperatures
Plane time harmonic waves
Rayleigh surface waves
Secular equation
Damped in time wave solutions

a  b  s  t  r  a  c  t

The  present  paper  studies  the  propagation  of plane  time  harmonic  waves  in  an  infinite  space  filled  by
a  thermoelastic  material  with  microtemperatures.  It is  found  that  there  are  seven  basic  waves  traveling
with distinct  speeds:  (a)  two  transverse  elastic  waves  uncoupled,  undamped  in  time  and  traveling  inde-
pendently  with  the speed  that is  unaffected  by  the thermal  effects;  (b)  two  transverse  thermal  standing
waves  decaying  exponentially  to zero  when  time  tends  to infinity  and  they  are  unaffected  by the  elastic
deformations;  (c) three  dilatational  waves  that are  coupled  due  to  the presence  of  thermal  properties  of
the material.  The  set  of  dilatational  waves  consists  of  a  quasi-elastic  longitudinal  wave  and  two  quasi-
thermal  standing  waves.  The  two  transverse  elastic  waves  are  not  subjected  to  the  dispersion,  while  the
other  two  transverse  thermal  standing  waves  and the  dilatational  waves  present  the  dispersive  charac-
ter.  Explicit  expressions  for all  these  seven  waves  are  presented.  The  Rayleigh  surface  wave  propagation
problem  is addressed  and  the  secular  equation  is  obtained  in  an  explicit  form.  Numerical  computations
are  performed  for a specific  model,  and  the results  obtained  are depicted  graphically.

© 2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Ieş an and Quintanilla [1] have developed a linear theory of thermoelasticity with microtemperatures by taking into consideration of
the microstructure of the body and assuming that each microelement possesses a microtemperature. Such a theory deserves to study the
effects of the temperature wave propagation in a nanomaterial which allows for variation of thermal properties at a microstructure level.
The microstructural theories are now used into the experimental research for determining the effective thermal conductivity properties
of nanomaterials (see, for example, Straughan [2] and the references therein).

Grot [3] was the first to take into consideration the inner structure of a body in order to develop a thermodynamic theory for thermoelastic
materials where microelements, in addition to classic microdeformations, possess microtemperatures. Riha [4] further developed a study
concerning heat conduction in thermoelastic materials with inner structure.

The theory of thermoelasticity with microtemperatures has attracted much attention in connection with the study of the basic qualitative
properties of solutions to the problems relating to various thermomechanical situations (see, for example, [5–14]). Recently, Ciarletta et al.
[15] investigate a model for a rigid heat conductor which allows for variation of thermal properties at a microstructural level and they
examine how the solution depends on changes in coupling coefficients between the macro and microthermal level.

Vadasz et al. [16] suggest that the thermal wave effects should be taken into account within the question of interpreting experimental
results regarding the measurements on the thermal conductivity in nanomaterials.

In this last connection, in the present paper we consider the linear theory of thermoelasticity with microtemperatures as developed in
[1] and address the wave propagation problem in the class of solutions with finite energy. Namely, we  are considering here damped and
undamped in time wave solutions. We  prove that there are seven basic waves traveling with distinct speeds: (a) two transverse elastic
waves uncoupled, undamped in time and traveling independently with a speed that is unaffected by the thermal effects; (b) two transverse
thermal standing waves decaying exponentially to zero when time tends to infinity and they are unaffected by the elastic deformations; (c)
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three dilatational waves that are coupled due to the presence of thermal properties of the material. Within the framework of the dilatational
set there is a quasi-elastic longitudinal wave and two quasi-thermal standing waves. The two  transverse elastic waves are not subjected to
the dispersion, while the other two transverse thermal standing waves and the dilatational waves present the dispersive character. Explicit
expressions for all these seven waves are presented. The propagation of the Rayleigh surface waves is studied in a half space filled by a
thermoelastic material with microtemperatures and the secular equation is obtained in an explicit expression. Numerical computations
are performed for a specific model, and the results obtained are depicted graphically.

Recently, Steeb et al. [17] studied the propagation of waves of assigned frequency in an infinite thermoelastic medium with microtem-
peratures, while Kumar et al. [18] considered the problem of reflection and transmission of waves at an interface of elastic and microstretch
thermoelastic solids with microtemperatures. The authors consider waves with real-valued frequency and complex-valued wave number,
being led to solutions with unbounded energy.

2. Basic equations

Throughout this section B is a bounded regular region of three-dimensional Euclidean space. We  let ∂B denote the boundary of B, and
designate by n the outward unit normal on ∂B. We  assume that the body occupying B is a linearly elastic material which possesses thermal
variation at a microstructure level. The body is referred to a fixed system of rectangular Cartesian axes Oxi (i = 1, 2, 3). Throughout this
paper Latin indices have the range 1, 2, 3, Greek indices have the range 1, 2 and the usual summation convention is employed. We  use
a subscript preceded by a comma  for partial differentiation with respect to the corresponding coordinate and a superposed dot denotes
partial differentiation with respect to time.

The temperature at a point x of the body depends on a temperature �(x, t), which may  be thought of as an averaged temperature at x,
and three microtemperatures wi(x, t) which contribute to the thermal microstructure of the material. The deformation of a body can be
described by means of three, namely, the displacement vector field u, the microtemperature vector field w and the temperature variation
T, measured from the constant absolute temperature T0 (>0), over B × (0, ∞).

Within the framework of the linear theory developed by Ieş an and Quintanilla [1], the constitutive equations for a homogeneous and
isotropic thermoelastic solid with microtemperatures are

tij = �errıij + 2�eij − ˇTıij,

�� = ˇerr + aT,

�εi = −bwi,

qi = kT,i + 	1wi

Qi = (	1 − 	2)wi + (k − 	3)T,i,

qij = −	4wr,rıij − 	5wi,j − 	6wj,i,

(1)

where

eij = 1
2

(ui,j + uj,i). (2)

Here, tij are the components of the stress tensor, � is the reference mass density, � is the entropy per unit mass, εi are the components of
the first moment of energy vector, qi are the components of the heat flux vector, Qi are the components of the mean heat flux vector, qij are
the components of the first heat flux moment vector, eij are the components of the strain tensor, ui are the components of the displacement
vector, wi are the components of the microtemperature vector, T is the temperature variation, �, �, ˇ, a, b, k and 	r (r = 1, 2, . . .,  6) are
constant constitutive coefficients and ıij is the Kronecker delta.

The fundamental system of field equations of the linear theory of thermoelasticity with microtemperatures consists of [1]:

– the equations of motion

tji,j + �fi = �üi, (3)

– the balance energy

�T0�̇ = qi,i + 
S, (4)

– the first moment of energy

�ε̇i = qji,j + qi − Qi + �Mi, (5)

where fi are the components of the body force vector, Mi are the components of the first heat source moment vector and S is the heat
supply.

The components of surface traction ti, the heat flux q and the components of the first heat flux moment �i at a regular point x of the
boundary ∂B are given by

ti = tjinj, q = qini, �i = qjinj, (6)

where nj = cos(nx, Oxj) and nx is the unit vector of the outward normal to ∂B at x.
Within the context of linear theory of thermoelasticity considered in [1], the Clausius–Duhem inequality reduces to

qiT,i − T0qjiwi,j − T0(Qi − qi)wi ≥ 0, (7)
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