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a  b  s  t  r  a  c  t

We  use complex  variable  methods  to  analyze  time-dependent  deformations  of  an isolated  elastic  nano-
fiber  embedded  in  an  infinite  elastic  matrix under  longitudinal  shear  subjected  to uniform  stress  at
infinity.  In  order  to incorporate  nanoscale  size-effects  into  our  continuum-based  model,  the  nano-
fiber  and  the  matrix  are  each  endowed  with  separate  and  distinct  surface  elasticities  described  by the
Gurtin–Murdoch  model.  The  fiber/matrix  interface  is  allowed  to  slide  via  a diffusion-controlled  mech-
anism.  We show  that  the  characteristic  relaxation  time  and  time-dependent  stress  distribution  in  the
composite  can  be described  completely  by three  size-dependent  parameters  and  a  size-independent
mismatch  parameter.  Further,  we  note  that  the  internal  stress  field  is  spatially  uniform  yet  size-  and
time-dependent.  Finally,  we  obtain  the  effective  anelastic  and size-dependent  shear  modulus  of the
fibrous  composite  using  the mean-field  method  of Mori–Tanaka.
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1. Introduction

Phenomena associated with time-dependent interfacial sliding
in polycrystals and composite materials have been studied exten-
sively (see, for example, Refs. [6–9,15,18]). Time-dependent sliding
can be attributed to either an artificially introduced viscous inter-
face layer designed to tailor damping performance of the composite
or to local diffusion on a length scale comparable to the size of
the asperities present in the interface [12]. In this paper, we adopt
the idea of a diffusion-controlled mechanism in which the gradient
of the normal stress along the interface results in the diffusion of
atoms from at least one of the adjoining materials to the interface
thus giving rise to interfacial sliding.

It is well-known that surface/interface stresses, tensions and
energies become significant when the dimensions of the fibers lie
in the nanometer-range [14]. To accommodate surface (and hence
nanoscale) effects into our model of deformation we appeal to the
theory of surface elasticity. The most celebrated continuum-based
surface elasticity model was first proposed by Gurtin et al. [3–5]
and recently clarified by Ru [13]. In the Gurtin–Murdoch model, the
surface is regarded as a thin elastic membrane perfectly bonded to
the bulk [2,10,16].
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In this paper, we first investigate the deformation of a single
elastic nano-fiber embedded in an infinite elastic matrix subjected
to remote uniform anti-plane shear stresses. The surface of the
nano-fiber and that of the matrix are endowed with separate and
distinct Gurtin–Murdoch surface elasticities and the fiber/matrix
interface is allowed to slide via the diffusion-controlled mechanism
mentioned above as identified by Raj and Ashby [12]. As in He and
Lim [7,8], our analysis is confined to a quasi-static process. Using
complex variable methods, we develop the time-dependent dis-
placement and stress distributions in the composite. We  show that
the characteristic relaxation time and the aforementioned elastic
distributions are completely determined by three size-dependent
parameters and one size-independent mismatch parameter. The
normalized relaxation time remains size-dependent due to the
incorporation of surface elasticities. The effective time-dependent
and size-dependent anti-plane shear modulus of the composite
with finite nano-fiber concentration is subsequently obtained using
the Mori–Tanaka mean-field method [1,11,19].

2. Basic formulation

2.1. The bulk elasticity

In what follows, unless otherwise stated, Latin indices i, j, k
take the values 1–3 and we  sum over repeated indices. In a Carte-
sian coordinate system

{
xi

}
, the equilibrium equation and the
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stress–strain law in a linearly elastic, homogeneous and isotropic
bulk solid are given by

�ij,j = 0, �ij = 2�εij + �εkkıij,

εij = 1
2

(ui,j + uj,i),
(1)

where � and � are the Lame constants, �ij and εij are, respectively,
the Cartesian components of the stress and strain tensors in the
bulk material, �i is the i-th component of the displacement vector
and ıij is the Kronecker delta.

In the case of anti-plane shear deformations of an isotropic elas-
tic material, the two shear stress components �31 and �32, the
out-of-plane displacement w = u3(x1, x2) and the stress function
� can be expressed in terms of a single analytic function f(z) of the
complex variable z = x1 + ix2 as

�32 + i�31 = �f ′(z), � + i�w = �f (z). (2)

Let t3 be the only non-zero traction component along the x3-
direction on a given boundary curve L. It can be shown that if s
is the arc-length measured along L so that the enclosed material
remains on the left with increasing s then [17],

t3 = −d�

ds
. (3)

2.2. The surface elasticity

The equilibrium conditions on a surface incorporating inter-
face/surface elasticity can be expressed as [3–5,13].

[�˛jnje˛] + �s
˛ˇ,ˇ

e˛ = 0, (tangential direction)

[�ijninj] = �s
˛ˇ

�˛ˇ, (normal direction)
(4)

where ni represent the Cartesian components of the unit normal
vector to the surface, [*] denotes the jump of the respective quantity
across the surface and �s

˛ˇ
and �˛ˇ are, respectively, the compo-

nents of the surface stress tensor and the curvature tensor of the
surface. In addition, the constitutive equations on the isotropic sur-
face are given by

�s
˛ˇ = �0ı˛ˇ + 2(�s − �0)εs

˛ˇ + (�s + �0)εs
�� ı˛ˇ, (5)

where εs
˛ˇ

are the components of the surface strain tensor, �0 is the
surface tension and �s and �s are the two surface Lame constants.

We mention that in Eqs. (4) and (5), the Greek indices ˛,  ̌ and �
take on values of the surface components. For example, in the case
of circular cylindrical fibers, ˛, ˇ, � each take on the values 	, z.

2.3. Time-dependent interfacial sliding

In the presence of a tangential traction of magnitude 
,
diffusion-controlled time-dependent sliding will take place along
the fiber/matrix interface according to the following linear law [12]


 = �ı̇. (6)

Here, ı is the displacement jump across the interface, the overdot
denotes differentiation with respect to time t and � is the interface
slip coefficient which can be measured empirically.

3. Interfacial sliding of an isolated nano-fiber

Consider first the case of an isolated nano-fiber embedded in an
infinite matrix. The linearly elastic materials occupying the fiber
and the matrix are assumed to be homogeneous and isotropic with
associated shear moduli �1 and �2, respectively. We  represent the
matrix by the domain S2 and assume that the fiber occupies a circu-
lar region S1 of radius R with center at the origin. The fiber/matrix

interface is denoted by the curve L. In what follows, the subscripts
1 and 2 (or the superscripts (1) and (2)) are used to identify the
respective quantities in S1 and S2. The matrix is subjected to remote
uniform anti-plane shear stresses (�∞

31, �∞
32). Separate surface elas-

ticities are simultaneously incorporated in the descriptions of the
surface of the fiber and that of the surface of the adjoining matrix.
In addition, the fiber/matrix interface is allowed to slide via the
diffusion-controlled mechanism described above. The stresses in
the fiber and the matrix change gradually during interfacial sliding
under quasi-static conditions. Consequently, Eq. (1) remains valid
for each of the two constituent phases.

We further assume that the interface L is coherent with respect
to either the inhomogeneity or the matrix. It then follows from Eqs.
(4) and (5) that the boundary conditions on the surface of the fiber
and matrix can be written, respectively, as

�1
dw1

dn
− �−

3n = (�(1)
s − �(1)

0 )
d2w1

ds2
,

on the surface of the fiber,

(7a)

�+
3n − �2

dw2

dn
= (�(2)

s − �(2)
0 )

d2w2

ds2
,

on the surface of the matrix.

(7b)

Here, n denotes the outward unit normal to L, s is the arc parameter
measured counterclockwise from n, and

�−
3n = �+

3n = �(ẇ2 − ẇ1). (8)

In view of Eq. (3), the above interface conditions along |z| = R
can be expressed in terms of the tangential derivative of the dis-
placement and stress function along the interface as follows

�(ẇ1 − ẇ2) − d�1

ds
= (�(1)

s − �(1)
0 )

d2w1

ds2
,

d�2

ds
− �(ẇ1 − ẇ2) = (�(2)

s − �(2)
0 )

d2w2

ds2
,

|z| = R. (9)

Eq. (9) can be expressed in terms of f1(z), f2(z) and their analytic
continuations f̄1(R2/z), f̄2(R2/z)  in each phase as:

�
[

ḟ +
1 (z) + ˙̄f

+
2 (R2/z)

]
+ �1z

R
f ′+

1 (z)

+(�(1)
s − �(1)

0 )

[
z

R2
f ′+

1 (z) + z2

R2
f

′′ +
1 (z)

]

= �
[

˙̄f
−
1 (R2/z)  + ḟ −

2 (z)
]

+ �1R

z
f̄ ′−
1 (R2/z)

+(�(1)
s − �(1)

0 )

[
1
z

f̄ ′−
1 (R2/z)  + R2

z2
f̄ ′′−
1 (R2/z)

]
,

�
[

ḟ +
1 (z) + ˙̄f

+
2 (R2/z)

]
− �2R

z
f̄ ′+
2 (R2/z)

+(�(2)
s − �(2)

0 )

[
1
z

f̄ ′+
2 (R2/z)  + R2

z2
f̄

′′+
2 (R2/z)

]

= �
[

˙̄f
−
1 (R2/z)  + ḟ −

2 (z)
]

− �2z

R
f ′−

2 (z)

+(�(2)
s − �(2)

0 )

[
z

R2
f ′−

2 (z) + z2

R2
f

′′ −
2 (z)

]
, |z| = R.

(10)
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