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a  b  s  t r  a  c  t

The  electromechanical  control  of  the dynamics  of thin  elastic  plate is analysed  using  both  the  modal
approach  and  the  direct  numerical  simulation  of partial  differential  equation.  The electromechanical
controller  is constituted  of  a RL  circuit  with  some  stings  connected  through  a magnet  to  the  plate. The
direct  numerical  simulation  reveals  the  existence  of  different  vibration  modes.  The  boundary  limits  of  the
control  parameters  leading  to  the reduction  of  vibration  amplitude,  snap  through  instability  and  Melnikov
chaos  are  determined  and  plotted  in  terms  of  the  system  parameters.  It is  seen  that  electromechanical
control  can  eliminate  the  chaotic  domain  leading  to  periodic  oscillations.
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1. Introduction

Many mechanical and civil structures like bridges and build-
ings are subjected to vibrations from various sources: rotating
engines, high-speeding cars and many other natural disturbances
(earthquakes). These vibrations are responsible for the fatigue and
damage which can result in the reduction or even loss of the
performance of the structure. Thus many researchers have been
interested by the control of linear and non-linear vibrating struc-
tures (Soong, 1950; Fuller et al., 1997; Aida et al., 1995, 1992; Nana
Nbendjo et al., 2003).

In the literature many methods to reduce the vibration have
been studied. Ashour and Nayfeh (2002) considered a non-
linear adaptive control of flexible structures using the saturation
phenomenon. They showed experimentally that the frequency-
measurement technique is very efficient and the response of the
beam is greatly reduced and saturated at a small value of the
energy from the excitation source. Another method is to use the
transduction mechanisms to reduce the vibrations. Hence Kitio
et al. (2006) analysed the electromechanical control of the beam
dynamics. They derived the critical parameters for the reduction
of amplitude, for the control of snap-through instability and for
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the control of chaos using approximate analytical treatments and
confirmed by the direct numerical simulation of the partial dif-
ferential equation. Recently, Nanha et al. (2013) dealt with the
enhancement of electromechanical control of vibration on a thin
plate submitted to non-ideal excitation. They used Routh–Hurwitz
criteria to obtain the stability condition of the controlled system
and some dynamics exploration leading us to the condition for
which the amplitude of vibration is reduced in the mechanical
structure.

Apart the study of Kitio et al. (2006), most of the theoretical
studies on vibration control of flexible structures are implemented
by using the modal equations (Nana Nbendjo, 2009; Nanha et al.,
2013). These equations are obtained when one applies approx-
imation methods such as Galerkin method or Fourier series.
Consequently the modal equations are an approximation of partial
differential equations.

This work is an extension of the work by Kitio et al. (2006) to the
case of a plate. The control of the dynamical behaviour of a plate
under the action of an external periodic load is considered using
both the modal approach and the direct numerical simulation of the
partial differential equations describing the plate dynamics. This
work is organized as follows. In Section 2 we  present the physical
system, the modal equation and the discretization scheme of the
partial differential equation of the plate under control. In Section 3
we use the harmonic balance to obtain the good control parameters
(linear case) and space parameters (non-linear) of the system to
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Fig. 1. Plate under electromechanical control.

predict the reduction of amplitude. In each case, the result of the
simulation of the modal equations and the numerical simulation of
the partial differential equations are given. Section 4 analyses the
appearance of snap through instability and chaos and their control.
Section 5 summarizes the work.

2. Physical system, modal equations and numerical scheme

2.1. Physical system

Based on the research presented by Shivamoggi (1997), we con-
sider a rectangular thin elastic plate of constant thickness h, simply
supported along the edges and subjected to a localized transverse
periodic excitation and a compressive stationary load Po per unit
of length at the edges x = 0 and a as shown in Fig. 1. For this works,
let us consider an example of steel plate having the following
parameters E = 2.11 × 1011 N/m, �=7850 kg/m3, a=0.8 m,  b=1.2 m,
h = 2 ×10−3 m and �=20 N s/m. We  confine our attention to a mid-
dle plane, so that the coplanar displacement components u and v
can be ignored. Po acts in the middle plane of the plate. An elec-
tromechanical device (Nanha et al., 2013) composed by a RL circuit
with some stings which represents the positions of the localized
control device is connected to the plate as controller. A schematic
of the set-up is shown in Fig. 1. The stings are regularly spaced and
directly connected to the plate. The structure is sketched so as to
clearly show the stings (there is no air gap between the stings and
the main plate). Taking into account the electromechanical control
device, the equations can be written as follows:
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In Eq. (1) � represents the density of the thin plate,
D = Eh3/12(1 − �2) is the bending rigidity, E is Young’s modulus,
� is the Poisson ratio, � is the damping coefficient, N and M are,
respectively, the number of stings acting in x and y directions,
respectively.

In order to obtain the dimensionless equations, we intro-
duce the following transformations of the variables and
parameters:
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Eqs (1a and 1b) reduce to
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