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a  b  s  t  r  a  c  t

We  develop  an analytical  bead-spring  model  to  investigate  the  role  of non-linear  rheology  on  the dynam-
ics  of  electrified  jets  in  the  early  stage  of  the  electrospinning  process.  Qualitative  arguments,  parameter
studies  as  well  as  numerical  simulations,  show  that  the  elongation  of  the  charged  jet  filament  is  signif-
icantly  reduced  in  the  presence  of  a  non-zero  yield  stress.  This  may  have  beneficial  implications  for  the
optimal  design  of  future  electrospinning  experiments.
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1. Introduction

The dynamics of charged polymers in external fields is an impor-
tant problem in non-equilibrium thermodynamics, with many
applications in science and engineering (Doshi and Reneker, 1995;
Andrady, 2008). In particular, such dynamics lies at the heart of
electrospinning experiments, whereby charged polymer jets are
electrospun to produce nanosized fibers; these are used for sev-
eral applications, as reinforcing elements in composite materials, as
building blocks of non-wetting surfaces layers on ordinary textiles,
of very thin polymeric separation membranes, and of nanoelec-
tronic and nanophotonic devices (Pisignano, 2013; Agarwal et al.,
2013; Arinstein et al., 2007; Mannarino and Rutledge, 2012). In
a typical electrospinning experiment, a charged polymer liquid is
ejected at the nozzle and is accelerated by an externally applied
electrostatic field until it reaches down to a charged plate, where
the fibers are finally collected. During the process, two different
regimes take place: an initial stable phase, where the steady jet is
accelerated by the field in a straight path away from the spinneret
(the ejecting apparatus); a second stage, in which an electrostatic-
driven bending instability arises before the jet reaches down to
a collector (most often a grounded or biased plane), where the
fibers are finally deposited. In particular, any small disturbance,
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either a mechanical vibration at the nozzle or hydrodynamic per-
turbations within the experimental apparatus, misaligning the jet
axis, would lead the jet into a region of chaotic bending instability
(Reneker et al., 2000). The stretching of the electrically driven jet is
thus governed by the competition between electrostatics and fluid
viscoelastic rheology.

The prime goal of electrospinning experiments is to minimize
the radius of the collected fibers. By a simple argument of mass
conservation, this is tantamount to maximizing the jet length by
the time it reaches the collecting plane. Consequently, the bending
instability is a desirable effect, as long it can be kept under control
in experiments. By the same argument, it is therefore of interest
to minimize the length of the initial stable jet region. Analyzing
such stable region is also relevant for an effective comparison with
results coming from electrospinning experiments studied in real-
time by means of high-speed cameras (Camposeo et al., 2013) or
X-ray phase-contrast imaging (Greenfeld et al., 2012).

In the last years, with the upsurge of interest in nanotechnol-
ogy, electrospinning has made the object of comprehensive studies,
from both modelling (Carroll and Joo, 2006) and experimental vie-
points (Theron et al., 2005) (for a review see Carroll et al., 2008).
Two families of models have been developed: the first treats the jet
filament as obeying the equations of continuum mechanics (Spivak
et al., 2000; Feng, 2002, 2003; Hohman et al., 2001a,b). Within the
second one, the jet is viewed as a series of discrete elements obey-
ing the equations of Newtonian mechanics (Reneker et al., 2000;
Yarin et al., 2001). More precisely, the jet is regarded as a series of
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Fig. 1. The experimental set up and reference system of the stable jet region, with
the origin at the nozzle orifice and z coordinate axis pointing down (figure not to
scale).

charged beads, connected by viscoelastic springs. Both approaches
above typically assume Newtonian fluids, with a linear strain-stress
constitutive relation. On the other hand, in a recent time, the use of
viscoelastic fluids has also been investigated in a number of papers,
both theoretical and experimental, for the case of power-law (Feng,
2002; Spivak et al., 2000) and other viscoelastic fluids (Carroll and
Joo, 2006, 2011), with special attention to the instability region.

In this paper, we investigate the effects of Herschel–Bulkley
non-Newtonian rheology on the early stage of the jet dynamics.
The main finding is that the jet elongation during such initial stable
phase can be considerably slowed down for the case of yield-stress
fluids. As a result, the use of yield-stress fluids might prove benefi-
cial for the design of future electrospinning experiments.

2. The model problem

Let us consider the electrical driven liquid jet in the elec-
trospinning experiment. We  confine our attention to the initial
rectilinear stable jet region and, for simplicity, all variables are
assumed to be uniform across the radial section of the jet, and vary
along z only, thus configuring a one-dimensional model. The fil-
ament is modelled by two charged beads (dimer) of mass m and
charge e, separated by a distance l, and subjected to the external
electrical field V0/h, h being the distance of the collector plate from
the injection point (Fig. 1) and V0 the applied voltage.

The deformation of the fluid filament is governed by the com-
bined action of electrostatic and viscoelastic forces (gravity and
surface tension are neglected), so that the momentum equation
reads (Reneker et al., 2000):

m
dv

dt
= − e2

l2
+ eV0

h
+ �a2� , (2.1)

where a is the cross-section radius of the bead and v the velocity
defined as:

dl

dt
= −v (2.2)

For a viscoelastic fluid, the stress � is governed by the following
equation:

d�

dt
= −1

�
(� − �HB), (2.3)

where � is the time relaxation constant and �HB is the
Herschel–Bulkley stress (Huang and Garcia, 1998; Burgos et al.,
1999) that reads

�HB = �Y + K
(

dl

ldt

)n

(2.4)

In the previous expression, �Y is the yield stress, n is the power-
law index and �0 = K|(1/l)(dl/dt)|n−1 is the effective viscosity with
K a prefactor having dimensions gsn−2 cm−1; the case n = 1 and
�Y = 0 recovers the Maxwellian fluid model, with �0 ≡ const . In the
stress Eqs. (2.3) and (2.4), the Maxwell, the power-law and the
Herschel–Bulkley models are combined. A large class of polymeric
and industrial fluids are described by �Y > 0 (Bingham fluid) and
n < 1 (shear-thinning fluid), n > 1 (shear-thickening fluid) (Bird et al.,
1987; Pontrelli, 1997; Pontrelli et al., 2009).

It is expedient to recast the above equations in a nondimensional
form by defining a length scale and a reference stress as in Reneker
et al. (2000):

L =
(

e2

�a2
0G

)(1/2)

G = �0

�
(2.5)

with a0 the initial radius. With no loss of generality, we assume the
initial length of the dimer to be L. Space is scaled in units of the
equilibrium length L at which Coulomb repulsion matches the ref-
erence viscoelastic stress G, while time is scaled with the relaxation
time �. The following nondimensional groups:

Q = e2�2
0

L3mG2
V = eV0�2

0

hLmG2
F = �a2

0�2
0

LmG
(2.6)

measure the relative strength of Coulomb, electrical, and viscoelas-
tic forces respectively (Reneker et al., 2000). Note that the above
scaling implies F = Q. By setting W = −v and applying mass conser-
vation:

�a2l = �a2
0L

the above equations (2.1)–(2.4) take the following nondimensional
form:

dl

dt
= W

dW

dt
= V + Q

l2
− F�

l
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(
W

l

)n

− �

(2.7)

with initial conditions: l(0) = 1, W(0) = 0, �(0) = 0. Eqs. (2.7) describe
a dynamical system with non-linear dissipation for n /= 1. It can
conveniently be pictured as a particle rolling down the potential
energy landscape E(l) = Q/l − Vl.  Since the conservative potential is
purely repulsive, the time-asymptotic state of the system is escape
to infinity, i.e. l→ ∞ as t→ ∞.  However, because the system also
experiences a non-linear dissipation, its transient dynamics is non-
trivial. This may  become relevant to electrospinning experiments,
as they take place in set-up about and below 1 m size, so that tran-
sient effects dominate the scene.

Before discussing numerical results, we  firstly present a quali-
tative analysis of the problem.
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