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a  b  s  t  r  a  c  t

This  paper  is concerned  with  the  linear  theory  of gradient  elasticity.  The  deformation  of homogeneous
and  isotropic  chiral  materials  subjected  to concentrated  body  forces  is investigated.  First,  a  counterpart  of
the Cauchy–Kowalewski–Somigliana  solution  in the  dynamic  theory  of  classical  elasticity  is  established.
Then,  a  general  solution  of  the  field  equations  that is  analogous  to the  Boussinesq–Somigliana–Galerkin
solution  in  the  classical  elastostatics  is  presented.  The  results  are  used  to  derive  the  fundamental  solutions
of  the  displacement  equations  in  the  equilibrium  theory  and  in the case  of  steady  vibrations.
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1. Introduction

In recent years the mechanical behavior of chiral materials has been the subject of many investigations. The deformation of chiral
materials is of interest for the investigation of bones, carbon nanotubes, auxetic materials, as well as composites with inclusions. In this
paper we use the theory of gradient elasticity (Toupin, 1962; Mindlin, 1964) to establish the fundamental solutions of the field equations
for isotropic chiral solids. This work is motivated by the recent interest in using gradient elasticity to model the chiral behavior of elastic
materials (see Maranganti and Sharma, 2007; Auffray et al., 2009; Papanicolopulos, 2011; Askes and Aifantis, 2011 and references therein).
We note that the gradient elasticity has been recently used to investigate the behavior of carbon nanotubes (Wang and Hu, 2005; Wang
and Wang, 2007; Aifantis, 2009; Zhang et al., 2010; Yayli, 2011). Papanicolopulos (2011) established the constitutive equations of isotropic
chiral solids in linear gradient elasticity. The field equations show that the chiral behavior is related to the gradient of the rotation.

In the present paper we consider the linear theory of gradient elasticity for homogeneous and isotropic chiral solids. In the case of
centrosymmetric materials, Mindlin (1964) established a general solution of the displacement equations of equilibrium and used it to
derive fundamental solutions for isotropic solids. In this paper we extend these results to chiral materials. Following Mindlin (1964),
we first establish general solutions of the displacement equations for chiral materials. Then, we use these solutions to investigate the
effects of the concentrated body forces. In Section 2 we present the basic equations of this theory. Section 3 is devoted to a counterpart
of the Cauchy–Kowalewski–Somigliana solution in the dynamic theory of classical elasticity. A general solution of the field equations
that is analogous to the Boussinesq–Somigliana–Galerkin solution in the classical elastostatics is also established. In Section 4 we use
the representation of solutions given in the preceding section to derive the fundamental solutions of the displacement equations in the
equilibrium theory and in the case of steady vibrations. The fundamental solutions play an important role in both applied and theoretical
studies on the mechanics of solids. They can be used to construct various analytical solutions of practical problems when boundary
conditions are imposed. The fundamental solutions are used in the potential theory (Kupradze et al., 1979; Ieş an, 2009) and they are
essential in the boundary element method as well as the study of cracks, defects and inclusions (Sharma, 2004 and references therein). In
the case of achiral materials the fundamental solutions in the gradient elastostatics have been established by Mindlin (1964) and Rogula
(1973).
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2. Basic equations

Mindlin (1964) presented three forms of the linear theory of gradient elasticity. The relations among the three forms have been estab-
lished by Mindlin and Eshel (1968). In what follows we  will use the first form of the gradient elasticity. We  note that the three forms of the
theory lead to the same displacement-equations of motion of isotropic chiral elastic solids.

In this section we present the fundamental equations of the linear gradient elasticity. Let us consider a body that in the undeformed
state occupies the regular region B of euclidean three-dimensional space and is bounded by the surface ∂B. We refer the deformation of
the body to a fixed system of rectangular axes Oxj, (j = 1, 2, 3). We  shall employ the usual summation and differentiation conventions:
Latin subscripts (unless otherwise specified) are understood to range over the integers (1,2,3), whereas Greek subscripts to the range (1,2);
summation over repeated subscripts is implied and subscripts preceded by a comma  denote partial differentiation with respect to the
corresponding cartesian coordinate. In all that follows, we use a superposed dot to denote partial differentiation with respect to the time.

We assume that B is occupied by a homogeneous and isotropic chiral elastic solid. Let u be the displacement vector field on B. The strain
measures are defined by

eij = 1
2

(ui,j + uj,i), �ijk = uk,ij. (1)

The potential energy density for a homogeneous and isotropic chiral elastic body is given by (Mindlin and Eshel, 1968; Papanicolopulos,
2011)

W = 1
2
�errejj + �eijeij + ˛1�iik�kjj + ˛2�ijj�irr + ˛3�iir�jjr + ˛4�ijk�ijk + ˛5�ijk�kji + 2fεikmeij�kjm, (2)

where εijk is the alternating symbol and �, �, ˛s, (s = 1, 2, . . .,  5), and f are prescribed constants. The constitutive equations for the stress
tensor and double stress tensor are

�ij = �errıij + 2�eij + f (εikm�jkm + εjkm�ikm),

�ijk = 1
2
˛1(�rriıjk + 2�krrıij + �rrjıik) + ˛2(�irrıjk + �jrrıik) + 2˛3�rrkıij + 2˛4�ijk + ˛5(�kji + �kij) + f (εiksejs + εjkseis), (3)

where ıij is the Kronecker delta.
In the gradient elasticity the equations of motion are expressed in the form

�jk,j − �ijk,ij + �Fk = �ük, (4)

where Fk is the body force per unit mass and � is the density in the reference configuration.
From (1), (3) and (4) we obtain the field equations in terms of the displacement field,

�2u + [c2
1 − c2

2 − (c2
1	

2
1 − c2

2	
2
2)
] grad div u + 2f0
 curl u = −F, (5)

where we have used the notations

�˛ = c2
˛(1 − 	2

˛
)
 − ∂2

∂t2
, (  ̨ = 1, 2),

c2
1 = (� + 2�)/�, c2 = �/�, 	2

1 = 2
� + �

5∑
j=1

˛j,

	2
2 = 2

�
(˛3 + ˛4), 
g  = g,ii, f0 = f/�.

(6)

If f = 0, then Eq. (5) reduce to those established by Mindlin (1964) for achiral materials. The positive definiteness of the internal energy
density implies that (Mindlin and Eshel, 1968; Papanicolopulos, 2011)

c2
1 > c2

2 > 0, 	2
1 > 0, 	2

2 > 0, 3f 2 < �(2˛4 − ˛5).

3. General solutions of the field equations

Following Mindlin (1964) we now establish general solutions of the displacement equations. With a view toward deriving fundamental
solutions for chiral materials we first establish a solution of the field equations that is analogous to the Cauchy–Kowalewski–Somigliana
solution in the dynamic theory of classical elasticity (Gurtin, 1972).

Theorem 1. Let

u = �1�2G − {[c2
1 − c2

2 − (c2
1	

2
1 − c2

2	
2
2)
]�2 − 4f 2

0

2} grad div G − 2f0�1 curl G, (7)

where the vector field G of class C12 on B × I satisfies the equation

�1(�2
2 + 4f 2

0

3)G = −F. (8)

Then u satisfies the Eq. (5).
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