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a  b  s  t  r  a  c  t

In  this  paper,  the  nonlinear  free  vibration  of  the  nanotube  with  damping  effects  is studied.  Based  on the
nonlocal  elastic  theory  and  Hamilton  principle,  the governing  equation  of  the nonlinear  free  vibration  for
the nanotube  is  obtained.  The  Galerkin  method  is  employed  to reduce  the  nonlinear  equation  with  the
integral  and  partial  differential  characteristics  into  a nonlinear  ordinary  differential  equation.  Then  the
relation  is  solved  by  the  multiple  scale  method  and  the  approximate  analytical  solution  is derived.  The
nonlinear  vibration  behaviors  are  discussed  with  the  effects  of  damping,  elastic  matrix  stiffness,  small
scales  and initial  displacements.  From  the  results,  it can  be observed  that  the  nonlinear  vibration  can  be
reduced  by  the  matrix  damping.  The  elastic  matrix  stiffness  has significant  influences  on  the nonlinear
vibration  properties.  The  nonlinear  behaviors  can  be changed  by the small  scale  effects,  especially  for  the
structure  with  large  initial  displacement.

©  2014  Elsevier  Ltd. All  rights  reserved.

1. Introductions

Carbon nanotube possesses the excellent electrical, chemical,
thermal and mechanical characteristics (Iijima, 1991; Lau et al.,
2006; Spitalsky et al., 2010). With these superior properties,
nano systems have shown various potential applications, such as
atomic-force microscope, composite nanofibers, nanobearings and
nanoactuators, etc. As a result, a lot of work has been carried out
on the mechanical properties of nanotubes with both theoretical
and experimental methods (Gibson et al., 2007; Sun et al., 2009;
Shokrieh and Rafiee, 2010; Araujo dos Santos, 2011). Because it
is difficult to control the experiment at the nano scale, numerical
simulation and analysis have been performed widely.

Although the molecular dynamics (MD) simulation is an effec-
tive way to investigate the mechanical behaviors of nano structures,
it is rather difficult for large-scale nano systems. Furthermore, with
the characteristic of less time-consuming, the continuum model
has been applied in many investigations (Yoon et al., 2006; Wang
and Cai, 2006; Wang and Varadan, 2006; Pentaras and Elishakoff,
2011). However, the classical continuum method cannot illustrate
the small scale effects which become more obvious and important
for nano systems.
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The nonlocal continuum theory presented by Eringen (1972,
1983) assumes that the stress at a reference point is a function
of the strain at every point in the body. After the first several
investigations on mechanical properties of nanotubes with the non-
local continuum theory (Sudak, 2003; Peddieson et al., 2003), many
researches have been reported on the characteristics of buckling (Li
and Kardomateas, 2007; Amara et al., 2010; Pradhan and Reddy,
2011), vibration (Xia and Wang, 2010; Kiani and Mehri, 2010;
Murmu  and Adhikari, 2011; Lim and Yang, 2011; Ghavanloo et al.,
2011; Lee and Chang, 2010; Simsek, 2010) and wave propagation
(Lu et al., 2007; Wang et al., 2008; Li et al., 2008) of nanotubes. For
more information about the nonlocal continuum theory applied to
nano structures, one can refer to Refs. (Wang et al., 2010; Arash and
Wang, 2012) and the references therein.

Different from a lot of work have been presented on the linear
vibration behavior of nanotubes, investigations on the nonlinear
properties are rather limited. Only several investigations on non-
linear problems with both classical (Fu et al., 2006; Yan et al., 2011;
Ansari and Hemmatnezhad, 2012) and nonlocal (Yang and Lim,
2009; Ke et al., 2009; Yang et al., 2010; Reddy, 2010; Shen and
Zhang, 2011; Fang et al., 2013; Simsek, 2014) continuum theories
have been reported. Most of the above work is mainly concerned
on the amplitude–frequency response of the nanotube. However,
little work can be found for nonlinear vibration properties of nano
systems with the damping effect. In the present paper, the non-
linear free vibration of the nanotube is studied by the nonlocal
continuum theory. Both the damping and small scale effects are
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considered and nonlinear vibration behaviors of the nanotube are
illustrated.

2. Equations of nonlinear vibration

The nanotube embedded in the viscous elastic matrix is shown
in Fig. 1. According to the work of Eringen (1972, 1983), the consti-
tutive relation of nonlocal elasticity is presented with the form of
the integral equation as

�kl, k − � ül = 0, (1a)

�kl(x) =
∫

V

˛(x, x′)�kl(x
′)dV(x′), (1b)

εkl = 1
2

(uk, l + ul, k), (1c)

where �kl is the nonlocal stress tensor, εkl the strain tensor, � the
mass density, ul the displacement vector, �kl(x′) the classical (i.e.
local) stress tensor, ˛(x, x′) the kernel function which describes the
influence of the strains at various location x′ on the stress at a given
location x and V the entire body considered.

We can observe from Eq. (1) that not only the strain state of the
location x has the influence on the stress, but also the strain state
at x′ can affect on the stress state of the same location. Because it
is difficult to use the constitutive relation with the integral forms,
the partial differential expressions are derived and applied widely,
which are presented as (Amara et al., 2010; Simsek, 2014; Chang,
2012):

[1 − (e0a)2∇2] � = C0 : �, (2)

where C0 is the elastic stiffness matrix of the classical elasticity,
� the strain vector, e0 the constant and a the internal character-
istic length (e.g. the length of C C bond, the lattice spacing and
the granular distance). It should be noted that e0a means the scale
coefficient which denotes the small scale effect on the mechanical
characteristics of nano structures. It will be reduced to the classical
(i.e. local) model for e0a = 0.

For the one-dimensional stress state, the Hook’s law with the
nonlocal continuum theory can be expressed as the following form:

�x − (e0a)2 ∂2�x

∂x2
= Eεx, (3)

where E is the Young’s modulus.
For the Euler–Bernoulli beam model, the axial force and the

resultant bending moment are

N =
∫

A

�xdA, M =
∫

A

z�xdA, (4)

where A the area of the cross section for the nanotube.
The displacement fields can be expressed as the following form:

u1(x, z, t) = u(x, t) − z
∂w

∂x
, u2 = 0, u3(x, z, t) = w(x, t) (5)

where u and w are the axial and transverse displacements, respec-
tively.

For the nonlinear vibration with the large amplitude, the
nonzero von Kármán nonlinear strain (i.e. εnon) should be consid-
ered and the relation between the strain and displacement is

ε0 = ∂u

∂x
+ 1

2

(
∂w

∂x

)2

, ε1 = −z�, (6)

where ε0 is the nonlinear extensional strain, � = −∂2w/∂x2 the
bending strain and ε1 the strain induced by �. Then the von Kármán
nonlinear strain (i.e. εnon) is

εnon = ε0 + ε1 = ∂u

∂x
+ 1

2

(
∂w

∂x

)2

− z
∂2w

∂x2
, (7)

From Eqs. (3)–(7), the following relation can be derived:

N − (e0a)2 ∂2N

∂x2
= E Aε0, (8a)

M − (e0a)2 ∂2M

∂x2
= E I�, (8b)

where I =
∫

A
z2d A is the moment of inertia.

The kinetic energy T can be expressed as the following form:

T = 1
2

�A

∫ L

0

[(
∂u

∂t

)2

+
(

∂w

∂t

)2
]

dx. (9)

Moreover, for the elastic matrix described as the Winkler model
with the viscous damping, the pressure caused by the elastic stiff-
ness of per unit axial length is −kw × w and kw denotes the matrix
material constant.

The strain energy U is

U = 1
2

∫ L

0

∫
A

(�ijεij) d A d x. (10)

According to Eqs. (7) and (10), we can derive that expression of
the strain energy as

U = 1
2

∫ L

0

{
N

[
∂u

∂x
+ 1

2

(
∂w

∂x

)2
]

− M
∂2w

∂x2

}
dx. (11)

Moreover, the virtual work by the external load from the viscous
elastic matrix can be written as

ı We x t =
∫ L

0

qı w d x, (12)

where q = −[kww + c(∂ w/∂ t)] is the load exerted by the viscous
elastic foundation and c the damping coefficient.

It has shown that the stick-slip mechanism at the interface of
the carbon nanotubes and surrounding matrix is a likely cause of
damping in materials with embedded nanotubes (Zhou et al., 2004;
Dai and Liao, 2009; Johnson et al., 2011; Liu et al., 2010, 2011).
More and deeper understanding about the damping mechanism
between the nanotube and matrix is still an open research subject.
But it should be noted that in the present work, the nonlocal beam
model is applied to simulate the nonlinear vibration behaviors of
the nanotube. Then the damping coefficient is added to describe the
damping effect of the matrix. Because in the classical publication,
the nonlinear vibration of the classical beam model with the damp-
ing effect has been presented by this method (Nayfeh and Mook,
1979), although the damping term in Eq. (10) cannot be simply con-
sidered as the inclusion or exclusion from the stick-slip mechanism,
such simple and reliable model has been accepted. Moreover, this
analysis is used and has shown its feasibility on nonlinear vibration
of the nanotube with the classical (i.e. local) beam model (Rasekh
et al., 2010).

From the Hamilton’s principle, we have the following relation:∫ t

0

ı[T − (U − We x t)]d t = 0. (13)
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