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a  b  s  t  r  a  c  t

Stability  conditions  are  the  key  to transform  kinematically  indeterminate  structures  into  prestressed
structures  or  deployable  structures.  From  the  viewpoint  of  symmetry,  a necessary  condition  is  presented
for the  stability  of symmetric  pin-jointed  structures  with  kinematic  indeterminacy.  The condition  is
derived  from  the  positive  definiteness  of the  quadratic  form  of  the  tangent  stiffness  matrix.  Numerical
examples  verify  that the  proposed  necessary  stability  condition  is in accord  with  the  conventional  theory
of structural  rigidity,  and  is considered  to  be more  comprehensible.  It is  robust  and  easy  to  implement.
Results  show  that a symmetric  prestressed  structure  is guaranteed  to  possess  integral  prestress  modes,
if the  necessary  condition  is satisfied.  Further,  a pin-jointed  structure  with  fully  symmetric  mechanism
modes  is  proved  to be  unstable,  if  it  does  not  satisfy  the  condition.

©  2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Since the first invention of tensegrity structures, various types
of kinematically indeterminate pin-jointed structures have been
successfully and increasingly applied in many academic as well as
engineering fields. They possess strong vitality and have remark-
able configurations. Because of the internal mechanisms, these
structures could not maintain stable equilibrium states unless
proper initial prestresses are introduced. According to whether ini-
tial prestresses can stiffen all mechanisms and be contributed to
the structural stability, kinematically indeterminate structures are
divided into (stable) prestressed structures and (unstable) finite
mechanisms. The prestressed structures could be further classified
into cable structures, tensegrity structures, cable domes, cable-
strut structures, etc. (Tibert and Pellegrino, 2003; Juan and Mirats
Tur, 2008; Tran et al., 2012). The finite mechanisms allow signif-
icant geometric transformations and can be useful as deployable
and foldable structures (Chen et al., 2013). Thus, the stability
condition is the key of transforming a kinematically indeter-
minate structure into a prestressed structure or a deployable
structure.

Pellegrino and Calladine (1986) introduced basic concepts
for kinematically indeterminate pin-jointed structures. They also
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presented a linear algorithm to determine whether initial pre-
stress modes would impart first-order stiffness to all internal
mechanisms (Calladine and Pellegrino, 1991). The proposed deter-
mination criterion has been referred to as the prestress stability
condition for pin-jointed structures. Nevertheless, recent studies
have validated that the condition is a necessary but not suffi-
cient condition for guaranteeing stable equilibriums (Connelly and
Whiteley, 1996; Guest, 2006; Ohsaki and Zhang, 2006). Admittedly,
the energy method is a conventional method to study the stability
conditions of pin-jointed structures (Motro, 2003; Skelton and de
Oliveira, 2009). On the basis of the energy method, Vassart et al.
(2000) proposed an analytical method to evaluate the order of
internal mechanisms for kinematically indeterminate structures.
The method could effectively distinguish finite mechanisms. In
fact, general prestressability conditions for kinematically indeter-
minate pin-jointed structures are difficult to determine (Sultan
et al., 2001), as the equilibrium matrix which relates internal
force vector with external load vector is singular (Pellegrino and
Calladine, 1986), and the stiffness matrices are not always posi-
tive definite (Zhang and Ohsaki, 2007). In the field of mathematics,
detailed and in-depth investigations on the necessary and suffi-
cient stability conditions for pin-jointed structures have been given
(Connelly, 1982; Connelly and Whiteley, 1996; Connelly and Back,
1998; Sultan, 2013). Described in terms of mathematical termi-
nologies and rigidity theory (Zhang et al., 2009), these stability
conditions are not easy to understand or implement in numerical
ways.
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To overcome this difficulty, some studies have introduced opti-
mization algorithms for investigating the stability of pin-jointed
structures, e.g., the genetic algorithm (El-Lishani et al., 2005;
Koohestani, 2012, 2013), and the ant colony systems (Chen et al.,
2012a,b). These algorithms have powerful heuristic searching abil-
ity, however, become inefficient for large-scale structures with a
large number of nodes and self-stress states. As many pin-jointed
structures are symmetric or periodic, the methods making use of
inherent symmetries are efficient and can simplify the complex
computation process (Yuan and Dong, 2003; Xi et al., 2011; Tran
et al., 2012; Chen and Feng, 2012a). In fact, group theory provides
a systematic way to investigate symmetric engineering structures
(Altmann and Herzig, 1994). It not only significantly reduces the
computation cost (Koohestani, 2011; Chen and Feng, 2012b), but
also has a qualitative understanding on the intrinsic properties
(Zingoni, 2009; Chen and Feng, 2014).

This study is following the previous work of the authors (Chen
et al., 2012a,b), and concentrated on the stability of symmetric
pin-jointed structures with internal mechanisms. From the view-
point of symmetry, we will present a necessary stability condition
for symmetric pin-jointed structures. In the symmetry-adapted
coordinate system, the stiffness matrices are expressed in the
block-diagonalized forms. To guarantee the positive definiteness
of quadratic form of the tangent stiffness matrix, a prestressed pin-
jointed structure has to hold at least one fully symmetric prestress
mode. In other words, members at similar positions keep indis-
tinguishable and equivalent under all the symmetry operations,
and they have the same prestress force. The necessary stability
condition will be more comprehensible for engineers to under-
stand general stability problems of kinematically indeterminate
pin-jointed structures.

2. General stability condition of pin-jointed structures

Here, consider a general kinematically indeterminate pin-
jointed structure in d-dimensional Euclidean space (d = 2, 3), which
consists of n pin-joints and b members. The pin-jointed structure
is said to be stable if it possesses to maintain the equilibrium
state. This means it tends to return back to the initial equilibrium
state subjected to any small disturbances (displacements). Thus,
a stable structure must have the (local) minimality of potential
energy at its initial equilibrium state (Connelly, 1982; Connelly
and Whiteley, 1996; Ohsaki and Zhang, 2006). According to the
Hellinger-Reissner principle, the potential energy ˘R could be
expressed as the function of the nd × 1 nodal displacement vector
d and the b × 1 Lagrange multiplier vector �, written as:

˘R(d, �) = −
nd∑

u=1

Pu(Xu − X0
u ) + 1

2

b∑
v=1

EvAv

l0v
(ev)2 +

b∑
v=1

Fv�v (1)

where Pu is the uth external force, X0
u and Xu denote the ini-

tial and current coordinates, and the uth entry in the vector d
is du = Xu − X0

u ; Ev, Av, l0v , and ev denote the Young’s modulus,
cross-sectional area, initial length, and elastic elongation of the
member v, respectively. Fv = fv(X1, · · ·,  Xu, · · ·,  Xdn) is the vth func-
tion describing the constraint conditions for the structure, and �v
is the corresponding Lagrange multiplier. Specifically, �v may  be
taken as the internal axial force of the member v. At the equilibrium
configuration, the increment of energy induced by arbitrary virtual
displacement vector ıd is:

�˘R = ˘R(d + ıd, �) − ˘R(d, �) > 0 (2)

Through the Taylor expansion, Eq. (2) could be rewritten as:

�˘R = ı˘R + ı2˘R + ı3˘R + O(ı4˘R) > 0 (3)

where ı˘R, ı2˘R, ı3˘R, and O(ı4˘R), respectively, are the first,
second, third, and high-order variations of the potential energy. At
the equilibrium state, it satisfies:

ı˘R = 0 for all vectors ıd (4)

In this case, the second-order variation term ı2˘R is the general
condition to evaluate the structural stability for the structure. Actu-
ally, the variation ı2˘R would be transformed into the quadratic
form of the nd × nd tangent stiffness matrix KT of the structure. That
is:

ı2˘R = ıdT KT ıd > 0 for all ıd (5)

where ()T is the conjugate transpose. In Eq. (5), the stability
determination of the structure at the equilibrium state has been
summarized as the positive definiteness problem of the nd × nd tan-
gent stiffness matrix KT. As the minimum eigenvalue �min of a real
symmetric matrix implies the positive definiteness of the matrix,
the stability condition of the structure is given as:

�min(KT )

⎧⎨
⎩

> 0 stable

= 0 critical

< 0 unstable

(6)

The criteria shown in Eqs. (5) and (6) have been widely adopted
as the necessary and sufficient stability condition in structural engi-
neering (Zhang and Ohsaki, 2007; Chen et al., 2012a). Note that
further computations are required on high-order variations of ˘R

if �min(KT ) = 0, as ı2˘R = 0 for some ıd at the critical case (see
Eq. (6)). Moreover, rigid-body motions are not considered for free-
standing structures in the stability analysis. They could be properly
constrained and the corresponding zero eigenvalues in the stiffness
matrices are excluded.

The nd × nd tangent stiffness matrix KT for a kinematically inde-
terminate pin-jointed structure is (Guest, 2006; Chen and Feng,
2012b):

KT = KE + KG = HGHT + KG (7)

where KE, KG, and H are the nd × nd modified material stiffness
matrix, the nd × nd geometric stiffness matrix, and the nd × b equi-
librium matrix of the structure, respectively; Ḡ is a b × b diagonal
matrix containing modified axial stiffness for each member, and its
diagonal entry is:

Ḡvv = EvAv − tv

l0v
for 1 ≤ v ≤ b (8)

where tv is the initial prestress for the member v. The geometric
stiffness matrix can be written as:

KG = ((CT )T · t̄ ·  CT ) ⊗ Id (9)

In Eq. (9), CT is a b × n connectivity matrix, where the ith and jth
entries of the vth row are taken as 1 and −1, and the other entries
are 0, if a member v connects the nodes i and j; t̄ is a b × b diagonal
matrix, and t̄vv = tv/l0v ; Id is a d × d identity matrix, and ⊗ denotes
the Kronecker product.

3. Necessary stability condition of symmetric kinematically
indeterminate structures

3.1. Matrices expressed in symmetry-adapted coordinate system

Kinematically indeterminate structures have m≥1  modes of
internal infinitesimal or finite mechanism, which bring about com-
putational complications on the structural stability. Denote M
as the nd × m mechanism matrix, and it is obtained from the
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