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a  b  s  t  r  a  c  t

This paper  presents  a new  model  for the  free  transverse  vibrations  of  an  Euler–Bernoulli  beam  using the
couple  stress  theory  of  elasticity  with  micro-structure.  Introducing  the  kinematic  variables,  the  strain
and  kinetic  energy  expressions  (involving  micro-inertia  effect)  have  been  obtained  and  the  Hamilton
principle  has  been  used  to derive  the  governing  equations  and  the  related  boundary  conditions  of  the
free  vibrations  of  fixed–fixed  and  simply  supported  beams.  A  numerical  solution  has  been  used  to  study
the  natural  frequencies,  mode  shapes  and  free  vibrations  of  the  beams.  A  comparative  result  has  shown
that  the  bending  rigidity  predicted  by  the couple  stress,  is closer  to the  experiment  result  than  that
predicted  by  the  modified  couple  stress  theory.  The  results  have shown  that  the  bending  rigidity  of the
beams  depends  on the  ratio  of  the  length  scale  to the  beam  thickness,  whereas  the  micro-inertia  term
depends  on  the ratio  of  the  length  scale  to the  beam  length.

© 2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Beams and plates are key components of many engineering
structures from nano to macro scales. There are several theories
that deal with the mechanical behavior of these components. In the
classical theory of linear elasticity, the material is considered as a
continuum in mathematical sense. In such continuum the atomic
structure of the material is neglected and the material particle
is considered simply a geometrical point. This theory is inade-
quate for describing the mechanical behavior of materials with
microstructure, such as polymeric foams, high-toughness ceram-
ics, high strength metal alloys, granular materials or porous bones,
because their behavior is characterized by non-local stresses and
the existence of an internal length scale. Micro-structural effects
are also important when structures have extremely small overall
dimensions, which are comparable to the internal length scale of
their material (Papargyri-Beskou and Beskos, 2008). Voigt was  the
first who tried to correct these shortcomings of classical elasticity
by taking into account the assumption that interaction between
the two parts through an area element inside the body is trans-
mitted not only by a force vector but also by a moment vector
giving rise to a ‘couple stress theory’ (Voigt, 1887). The com-
plete theory of asymmetric elasticity was developed by Cosserat
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and Cosserat (1909), which was non-linear in the beginning. They
assumed that each material point of a three dimensional continuum
is associated with a ‘rigid triad’ and during the process of deforma-
tion; it can rotate independently in addition to the displacement.
After a gap of about fifty years, Cosserats theory drew attention
of researchers and several Cosserat-type theories were developed
independently (e.g., Aero and Kuvshinskii, 1960; Eringen, 1962;
Grioli, 1960; Gunther, 1958; Koiter, 1964; Mindlin and Tiersten,
1962; Nowacki, 1974; Palmov, 1964; Rajagopal, 1960; Toupin,
1962), among several others. Later, the general Cosserat continuum
theory acquired the name of ‘micropolar continuum theory’ follow-
ing Eringen (1966a,b), in which the micro-rotation vector is taken
independent of displacement vector. Eringen and Suhubi (1964)
and Suhubi and Eringen (1964) developed a non-linear theory for
‘micro-elasticity’, in which intrinsic motions of the microelements
were taken into account. A further generalization of the continuum
with microstructure leads to micromorphic continuum of Eringen
(1966a,b). Micromorphic continuum treats a material body as a
continuous collection of a large number of deformable particles,
with each particle possessing finite size and inner structure. Using
assumptions such as infinitesimal deformation and slow motion,
micromorphic theory can be reduced to microstructure theory of
Mindlin (1964). When the microstructure of the material is con-
sidered rigid, it becomes the Eringen’s micropolar theory (Eringen,
1966a,b). Assuming a constant micro-inertia, Eringen’s micropolar
theory is identical to the Cosserats theory. Eliminating the dis-
tinction of macro-motion of the particle and the micro-motion of
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its inner structure, it becomes couple stress theory (Mindlin and
Tiersten, 1962; Toupin, 1962). Moreover, when the particle reduces
to a mass point, all theories reduce to classical or ordinary contin-
uum mechanics.

The general theory of Mindlin includes three equivalent forms
which are defined on the basis of three different expressions for
the strain energy density. The first expression involves gradients
of displacements, the second gradients of strain and the third gra-
dients of rotation. The couple stress theory is based on this third
expression of the strain energy density while second form leads to
the gradient elastic theory.

The classical couple stress elasticity theory is a higher order
continuum theory that contains two higher-order material length-
scale parameters appear in addition to the two classical Lame
constants. In this classical conception, only the conventional
equilibrium relationships of forces and moments (of forces) are
enforced and the couple is unconstrained in the absence of higher
order equilibrium requirements. The couple stress theory has been
applied to model the pure bending of a circular cylinder by Anthoine
(2000). He has reported that the bending inertia of a circular
cross-section results in higher values than those accepted before,
especially when the ratio of the radius of the beam to the charac-
teristic material length is lower than 20.

Yang et al. in 2002 introduced the modified couple stress theory.
Beside the two conventional equilibrium relationships in the classi-
cal couple stress, they proposed an additional relation to constrain
the couple. This relation considers the balance of moment of rota-
tional momentum. This assumption make the couple stress tensor
symmetric. Utilizing the modified couple stress theory, Park and
Gao (2006) studied the static response of an Euler–Bernoulli beam
and interpreted the outcomes of an epoxy polymeric beam bending
test. Kong et al. (2008, 2009) derived the governing equation, ini-
tial and boundary conditions of an Euler–Bernoulli beam using the
modified coupled stress theory and strain gradient elasticity theory.
As they reported, the stiffness of beams is size-dependent. In addi-
tion, the difference between the stiffness obtained by the classical
beam theory and those predicted by the modified couple stress the-
ory is significant when the beam characteristic size is comparable to
the internal material length-scale parameter. Recently, Fathalilou
et al. (2011) have used the modified couple stress theory to study
the pull-in instability of a gold micro-beam switch with the spec-
ifications introduced in the experimental work of Ballestra et al.
(2010). As they reported, although using the modified couple stress
theory leads to better results than the classic theory, yet there is a
considerable difference between the results of the experiments and
the modified couple stress theory.

Beam bending models based on other non-classical elasticity
theories have also been reported. Papargyri-Beskou et al. (2003)
have derived and solved the governing equation and corresponding
boundary conditions of the beam buckling and bending using the
simple strain gradient theory. Lazopoulos and Lazopoulos (2010)
have studied the bending and buckling problem of thin beams using
strain gradient theory with the terms depending upon the area of
the cross-section of the beam.

In spite of mentioned studies about the mechanical behavior of
Euler–Bernoulli beams using various elasticity theories, there is no
comprehensive modeling of beams in the literature using the cou-
ple stress theory of elasticity with micro-structure. The objective
of this paper is to introduce a non-classic model for the free vibra-
tions of an Euler–Bernoulli beam using the concepts of the couple
stress theory. The present model involves the micro-rotation effects
leading to an added inertia in the dynamic motion. The governing
equation and boundary conditions for the beams are obtained using
the Hamilton principle. Unlike the existence of two  non-classic
material length scale in the couple stress theory for the general con-
tinuum, only one length scale parameter is appeared in the beam

model. A comparative result shows that the bending rigidity pre-
dicted by the couple stress, is closer to the experiment than that
predicted by the modified couple stress theory.

2. Fundamental equations of the couple stress theory

In the linear couple stress theory, the strain energy, in addition
to the strain, is a function of the rotation-gradient (Mindlin, 1964).
In the following sub-sections the helpful kinematic variables, strain
and kinetic energies and constitutive equations of this theory are
presented.

2.1. Kinematic variables

In the Cartesian coordinates, we  define ui to represent the
displacement field of the continuum material. The displacement
gradient tensor ui,j can be decomposed into symmetric and skew-
symmetric parts as strain and rotation tensors, respectively:

ui,j = εij + ωij (i, j = 1, 2, 3) (1)

where

εij = 1
2

(ui,j + uj,i) (2)

ωij = 1
2

(ui,j − uj,i) (3)

The rotation vector dual to the rotation tensor is defined as

�i = 1
2

eijkωkj = 1
2

eijkuk,j (4)

where e is the alternator.
The other kinematic variable to be taken into account in this

theory is the gradient of rotation:

�ij = �j,i = 1
2

ejklωkl,i (5)

Considering Eq. (4), the following relation is obtained:

�ij = 1
2

ejklul,ki (6)

where � can be defined also, the curl of the strain.

2.2. Strain and kinetic energies

The strain energy of the deformed body is assumed to depend on
the strain ε and the rotation gradient �, so that the associated stress
quantities are the symmetric Cauchy stress tensor � and the devi-
atoric couple stress tensor � (Mindlin, 1964). It then follows that
the strain energy Es in a deformed isotropic linear elastic material
occupying region V is given by

Es = 1
2

∫
V

(�ijεij + �ij�ij) dv (7)

In the case of a homogenous continuum composed of unit cells
having the form of cubes with characteristics dimension 2a,  the
micro-deformation is equal to the gradient of the displacement
and the relative deformation is neglected as worked out by Mindlin
(1964). Georgiadis and Velgaki (2003) have introduced the follow-
ing expression for the kinetic energy of a homogeneous continuum
with couple stress and micro-inertia effects:

Ek =
∫

V

(
1
2

�u̇iu̇i + 1
6

�a2u̇j,iu̇j,i

)
dv (8)

In the above equation � denotes the mass density of the body.
The last term in the above integral indicates the kinetic energy due
to the micro-variables.
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